Skip to main content
Log in

Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to easy re-stacking, low yield of few-layered MXenes (f-MXenes), the applications of MXenes are mainly restricted in multi-layered MXenes (m-MXenes) state. Although f-MXenes can be prepared from m-MXenes, after exfoliation process, a mass of sediments which are still essentially compact MXenes are usually directly discarded, leading to low utilization of raw m-MXenes. Herein, a classified preparation strategy is adopted to exploit the raw m-MXenes and traditional MXenes sediments, taking multi-layered Ti3C2Tx MXene as an example. Via rational delamination and subsequent treatment to Ti3C2Tx sediments, we succeed in achieving classified and large-scale preparation of various Ti3C2Tx MXene derivatives, including few-layered Ti3C2Tx (f-Ti3C2Tx) powders, f-Ti3C2Tx films, and Ti3C2Tx MXene-derived nanowires with heterostructure of potassium titanate and Ti3C2Tx. We demonstrate the necessity of “step-by-step delamination” towards traditional Ti3C2Tx sediments to improve the yield of f-Ti3C2Tx from 15% to 72%; the feasibility of “solution-phase flocculation (SPF)” to fundamentally solve the re-stacking phenomenon, and oxidation degradation issues of f-Ti3C2Tx during storage; as well as the convenience of SPF to deal with time-consuming issues of fabricating Ti3C2Tx films. What’s more, alkali-heat treatment of final Ti3C2Tx sediments turns waste into treasure of Ti3C2Tx-derived nanowires, leading to 100% utilization of raw Ti3C2Tx. The content of one-dimensional (1D) nanowires in the hybrids can be adjusted by controlling alkalization time. The 3D architecture heterostructure composed of 1D nanowires and 2D nanosheets exhibits gorgeous application potential. This work can expand preparation and application of various MXenes derivatives, promoting process of various MXenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    Article  CAS  Google Scholar 

  2. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    Article  CAS  Google Scholar 

  3. Sokol, M.; Natu, V.; Kota, S.; Barsoum, M. W. On the chemical diversity of the MAX phases. Trends Chem. 2019, 1, 210–223.

    Article  CAS  Google Scholar 

  4. Nan, J. X.; Guo, X.; Xiao, J.; Li, X.; Chen, W. H.; Wu, W. J.; Liu, H.; Wang, Y.; Wu, M. H.; Wang, G. X. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, 1902085.

    Article  CAS  Google Scholar 

  5. Zhao, D. Y.; Zhao, R. Z.; Dong, S. H.; Miao, X. G.; Zhang, Z. W.; Wang, C. X.; Yin, L. W. Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 2019, 12, 2422–2432.

    Article  CAS  Google Scholar 

  6. Sun, Y.; Zhou, Y. J.; Liu, Y.; Wu, Q. Y.; Zhu, M. M.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Res. 2020, 13, 2683–2690.

    Article  CAS  Google Scholar 

  7. Hui, X. B.; Ge, X. L.; Zhao, R. Z.; Li, Z. Q.; Yin, L. W. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 2020, 30, 2005190.

    Article  CAS  Google Scholar 

  8. Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for highperformance lithium-sulfur batteries. Nano Res. 2021.

  9. Zhao, R. Z.; Di, H. X.; Wang, C. X.; Hui, X. B.; Zhao, D. Y.; Wang, R. T.; Zhang, L. Y.; Yin, L. W. Encapsulating ultrafine Sb nanoparticles in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance. ACS Nano 2020, 14, 13938–13951.

    Article  Google Scholar 

  10. Fang, Y. Z.; Zhang, Y.; Zhu, K.; Lian, R. Q.; Gao, Y.; Yin, J. L.; Ye, K.; Cheng, K.; Yan, J.; Wang, G. L. et al. Lithiophilic three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 2019, 13, 14319–14328.

    Article  CAS  Google Scholar 

  11. Wang, H.; Cao, J. J.; Zhou, Y. J.; Wang, X.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance. Nano Res. 2021.

  12. Guo, D. Z.; Li, X.; Jiao, Y. Q.; Yan, H. J.; Wu, A. P.; Yang, G. C.; Wang, Y.; Tian, C. G.; Fu, H. G. A dual-active Co-CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. Nano Res. 2021.

  13. Wang, Z. H.; Yang, L. X.; Zhou, Y.; Xu, C.; Yan, M.; Wu, C. NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2021, 13, 16713–16721.

    Article  CAS  Google Scholar 

  14. Cao, W. T.; Ma, C.; Tan, S.; Ma, M. G.; Wan, P. B.; Chen, F. Ultrathin and flexible CNTs/MXene/Cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 2019, 11, 72.

    Article  CAS  Google Scholar 

  15. Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021.

  16. Guo, X.; Zhang, W. X.; Zhang, J. Q.; Zhou, D.; Tang, X.; Xu, X. F.; Li, B. H.; Liu, H.; Wang, G. X. Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 2020, 14, 3651–3659.

    Article  CAS  Google Scholar 

  17. Cao, Y. P.; Chen, H.; Shen, Y. P.; Chen, M.; Zhang, Y. L.; Zhang, L. Y.; Wang, Q.; Guo, S. J.; Yang, H. SnS2 nanosheets anchored on nitrogen and sulfur co-doped MXene sheets for high-performance potassium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 17668–17676.

    Article  CAS  Google Scholar 

  18. Zhang, S. L.; Han, W. Q. Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering. Phys. Chem. Chem. Phys. 2020, 22, 16482–16526.

    Article  CAS  Google Scholar 

  19. Jiang, X. T.; Kuklin, A. V.; Baev, A.; Ge, Y. Q.; Ågren, H.; Zhang, H.; Prasad, P. N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58.

    Article  CAS  Google Scholar 

  20. Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

    Article  CAS  Google Scholar 

  21. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

    Article  CAS  Google Scholar 

  22. Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

    Article  CAS  Google Scholar 

  23. Zhang, Q. X.; Lai, H. R.; Fan, R. Z.; Ji, P. Y.; Fu, X. L.; Li, H. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 2021, 15, 5249–5262.

    Article  CAS  Google Scholar 

  24. Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.

    Article  CAS  Google Scholar 

  25. Li, K.; Liang, M. Y.; Wang, H.; Wang, X. H.; Huang, Y. S.; Coelho, J.; Pinilla, S.; Zhang, Y. L.; Qi, F. W.; Nicolosi, V. et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020, 30, 2000842.

    Article  CAS  Google Scholar 

  26. Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737.

    Article  CAS  Google Scholar 

  27. Yao, L.; Gu, Q. F.; Yu, X. B. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries. ACS Nano 2021, 15, 3228–3240.

    Article  CAS  Google Scholar 

  28. Zhu, J. T.; Wang, H.; Ma, L.; Zou, G. F. Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure. Nano Res. 2021.

  29. Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nüesch, F.; Zhang, C. F. Turning trash into treasure: Additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 2020, 32, 2000716.

    Article  CAS  Google Scholar 

  30. Rajavel, K.; Yu, X. C.; Zhu, P. L.; Hu, Y. G.; Sun, R.; Wong, C. Exfoliation and defect control of two-dimensional few-layer MXene Ti3C2Tx for electromagnetic interference shielding coatings. ACS Appl. Mater. Interfaces 2020, 12, 49737–49747.

    Article  CAS  Google Scholar 

  31. Tang, R. D.; Xiong, S.; Gong, D. X.; Deng, Y. C.; Wang, Y. C.; Su, L.; Ding, C. X.; Yang, L. H.; Liao, C. J. Ti3C2 2D MXene: Recent progress and perspectives in photocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 56663–56680.

    Article  CAS  Google Scholar 

  32. Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G. X.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523.

    Article  CAS  Google Scholar 

  33. Zhao, X. F.; Vashisth, A.; Prehn, E.; Sun, W. M.; Shah, S. A.; Habib, T.; Chen, Y. X.; Tan, Z. Y.; Lutkenhaus, J. L.; Radovic, M. et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 2019, 1, 513–526.

    Article  Google Scholar 

  34. Li, J.; Li, X.; Van der Bruggen, B. An MXene-based membrane for molecular separation. Environ. Sci.: Nano 2020, 7, 1289–1304.

    CAS  Google Scholar 

  35. Gao, L. F.; Li, C.; Huang, W. C.; Mei, S.; Lin, H.; Ou, Q.; Zhang, Y.; Guo, J.; Zhang, F.; Xu, S. X. et al. MXene/polymer membranes: Synthesis, properties, and emerging applications. Chem. Mater. 2020, 32, 1703–1747.

    Article  CAS  Google Scholar 

  36. Karahan, H. E.; Goh, K.; Zhang, C. F.; Yang, E.; Yıldırım, C.; Chuah, C. Y.; Ahunbay, M. G.; Lee, J.; Tantekin-Ersolmaz, Ş. B.; Chen, Y. et al. MXene materials for designing advanced separation membranes. Adv. Mater. 2020, 32, 1906697.

    Article  CAS  Google Scholar 

  37. Fu, Z. H.; Wang, N.; Legut, D.; Si, C.; Zhang, Q. F.; Du, S. Y.; Germann, T. C.; Francisco, J. S.; Zhang, R. F. Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 2019, 119, 11980–12031.

    Article  CAS  Google Scholar 

  38. Wei, C. L.; Tao, Y.; An, Y. L.; Tian, Y.; Zhang, Y. C.; Feng, J. K.; Qian, Y. T. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 30, 2004613.

    Article  CAS  Google Scholar 

  39. Zhang, S. L.; Ying, H. J.; Guo, R. N.; Yang, W. T.; Han, W. Q. Vapor deposition red phosphorus to prepare nitrogen-doped Ti3C2Tx MXenes composites for lithium-ion batteries. J. Phys. Chem. Lett. 2019, 10, 6446–6454.

    Article  CAS  Google Scholar 

  40. Huang, P. F.; Zhang, S. L.; Ying, H. J.; Yang, W. T.; Wang, J. L.; Guo, R. N.; Han, W. Q. Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 2021, 14, 1218–1227.

    Article  CAS  Google Scholar 

  41. Shekhirev, M.; Shuck, C. E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 2021, 120, 100757.

    Article  CAS  Google Scholar 

  42. Zhang, F.; Guo, X.; Xiong, P.; Zhang, J. Q.; Song, J. J.; Yan, K.; Gao, X. C.; Liu, H.; Wang, G. X. Interface engineering of MXene composite separator for high-performance Li-Se and Na-Se batteries. Adv. Energy Mater. 2020, 10, 2000446.

    Article  CAS  Google Scholar 

  43. Guo, X.; Zhang, J. Q.; Song, J. J.; Wu, W. J.; Liu, H.; Wang, G. X. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 2018, 14, 306–313.

    Article  Google Scholar 

  44. Tang, X.; Guo, X.; Wu, W. J.; Wang, G. X. 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv. Energy Mater. 2018, 8, 1801897.

    Article  Google Scholar 

  45. Fan, Z. D.; Jin, J.; Li, C.; Cai, J. S.; Wei, C. H.; Shao, Y. L.; Zou, G. F.; Sun, J. Y. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 2021, 15, 3098–3107.

    Article  CAS  Google Scholar 

  46. Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Qin, J. Q.; Wang, S.; Shi, X. Y.; Bao, X. H. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 2017, 11, 4792–4800.

    Article  CAS  Google Scholar 

  47. Zhang, S. L.; Ying, H. J.; Yuan, B.; Hu, R. Z.; Han, W. Q. Partial atomic tin nanocomplex pillared few-layered Ti3C2Tx MXenes for superior lithium-ion storage. Nano-Micro Lett. 2020, 12, 78.

    Article  Google Scholar 

  48. Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

    Article  CAS  Google Scholar 

  49. Fang, Y. Z.; Yang, B. W.; He, D. T.; Li, H. P.; Zhu, K.; Wu, L.; Ye, K.; Cheng, K.; Yan, J.; Wang, G. L. et al. Porous and free-standing Ti3C2Tx-RGO film with ultrahigh gravimetric capacitance for supercapacitors. Chin. Chem. Lett. 2020, 31, 1004–1008.

    Article  CAS  Google Scholar 

  50. Zhang, C. F. Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 2021, 60, 417–434.

    Article  Google Scholar 

  51. Guan, Y. F.; Jiang, S.; Cong, Y.; Wang, J. P.; Dong, Z. J.; Zhang, Q.; Yuan, G. M.; Li, Y. J.; Li, X. K. A hydrofluoric acid-free synthesis of 2D vanadium carbide (V2C) MXene for supercapacitor electrodes. 2D Mater. 2020, 7, 025010.

    Article  CAS  Google Scholar 

  52. Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

    Article  CAS  Google Scholar 

  53. Huang, J. M.; Meng, R. J.; Zu, L. H.; Wang, Z. J.; Feng, N.; Yang, Z. Y.; Yu, Y.; Yang, J. H. Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries. Nano Energy 2018, 46, 20–28.

    Article  CAS  Google Scholar 

  54. Huang, S. H.; Mochalin, V. N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 2019, 58, 1958–1966.

    Article  CAS  Google Scholar 

  55. Li, X. L.; Huang, Z. D.; Zhi, C. Y. Environmental stability of MXenes as energy storage materials. Front. Mater. 2019, 6, 312.

    Article  Google Scholar 

  56. Luo, J. M.; Lu, X.; Matios, E.; Wang, C. L.; Wang, H.; Zhang, Y. W.; Hu, X. F.; Li, W. Y. Tunable MXene-derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode. Nano Lett. 2020, 20, 7700–7708.

    Article  CAS  Google Scholar 

  57. Lee, K.; Yoo, D. Large-area sodium titanate nanorods formed on titanium surface via NaOH alkali treatment. Arch. Metall. Mater. 2015, 60, 1371–1374.

    Article  CAS  Google Scholar 

  58. Yin, L. J.; Li, Y. T.; Yao, X. C.; Wang, Y. Z.; Jia, L.; Liu, Q. M.; Li, J. S.; Li, Y. L.; He, D. Y. MXenes for solar cells. Nano-Micro Lett. 2021, 13, 78.

    Article  Google Scholar 

  59. Lim, K. R. G.; Handoko, A. D.; Nemani, S. K.; Wyatt, B.; Jiang, H. Y.; Tang, J. W.; Anasori, B.; Seh, Z. W. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 2020, 14, 10834–10864.

    Article  CAS  Google Scholar 

  60. Yuan, W. Y.; Cheng, L. F.; An, Y. R.; Wu, H.; Yao, N.; Fan, X. L.; Guo, X. H. MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2018, 6, 8976–8982.

    Article  CAS  Google Scholar 

  61. Pang, S. Y.; Io, W. F.; Wong, L. W.; Zhao, J.; Hao, J. H. Efficient energy conversion and storage based on robust fluoride-free self-assembled 1D niobium carbide in 3D nanowire network. Adv. Sci. 2020, 7, 1903680.

    Article  CAS  Google Scholar 

  62. He, X.; Jin, S.; Miao, L. C.; Cai, Y. C.; Hou, Y. P.; Li, H. X.; Zhang, K.; Yan, Z. H.; Chen, J. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem., Int. Ed. 2020, 59, 16705–16711.

    Article  CAS  Google Scholar 

  63. Dong, Y. F.; Zheng, S. H.; Qin, J. Q.; Zhao, X. J.; Shi, H. D.; Wang, X. H.; Chen, J.; Wu, Z. S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 2018, 12, 2381–2388.

    Article  CAS  Google Scholar 

  64. Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1–8.

    Article  CAS  Google Scholar 

  65. Zheng, S. H.; Ma, J. X.; Fang, K. X.; Li, S. W.; Qin, J. Q.; Li, Y. G.; Wang, J. M.; Zhang, L. Z.; Zhou, F.; Liu, F. Y. et al. High-voltage potassium ion micro-supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system. Adv. Energy Mater. 2021, 11, 2003835.

    Article  CAS  Google Scholar 

  66. Zhong, W.; Tao, M. L.; Tang, W. W.; Gao, W.; Yang, T. T.; Zhang, Y. Q.; Zhan, R. M.; Bao, S. J.; Xu, M. W. MXene-derivative pompon-like Na2Ti3O7@C anode material for advanced sodium ion batteries. Chem. Eng. J. 2019, 378, 122209.

    Article  CAS  Google Scholar 

  67. Ganeshan, K.; Shin, Y. K.; Osti, N. C.; Sun, Y. Y. L.; Prenger, K.; Naguib, M.; Tyagi, M.; Mamontov, E.; Jiang, D. E.; van Duin, A. C. T. Structure and dynamics of aqueous electrolytes confined in 2D-TiO2/Ti3C2T2 MXene heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 58378–58389.

    Article  CAS  Google Scholar 

  68. Zhu, Q. Z.; Li, J. P.; Simon, P.; Xu, B. Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Mater. 2021, 35, 630–660.

    Article  Google Scholar 

  69. Li, N.; Jiang, Y.; Zhou, C. H.; Xiao, Y.; Meng, B.; Wang, Z. Y.; Huang, D. Z.; Xing, C. Y.; Peng, Z. C. High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl. Mater. Interfaces 2019, 11, 38116–38125.

    Article  CAS  Google Scholar 

  70. Zhang, W. L.; Wei, W.; Liu, W.; Guan, T.; Tian, Y.; Zeng, H. B. Engineering the morphology of TiO2/carbon hybrids via oxidized Ti3C2Tx MXene and associated electrorheological activities. Chem. Eng. J. 2019, 378, 122170.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by the National Natural ScienceFoundation of China (No. 51901206) and the fund from Taihu Electric Corporation 0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Qiang Han.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Ying, H., Huang, P. et al. Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives. Nano Res. 15, 2746–2755 (2022). https://doi.org/10.1007/s12274-021-3847-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3847-4

Keywords

Navigation