Skip to main content
Log in

Classical spin liquid state in a rhombic lattice metal-organic framework

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Discovering more and new geometrically frustrated systems remains an active point of inquiry in fundamental physics for the existence of unusual states of matter. Here, we report spin-liquid-like behavior in a two-dimensional (2D) rhombic lattice Fe-metal-organic framework (Fe-MOF) with frustrated antiferromagnetism. This Fe-MOF exhibits a high frustration factor f = ∣θCW∣/TN ≥ 315, and its long-range magnetic order is suppressed down to 180 mK. Detailed theoretical calculations demonstrate strong antiferromagnetic coupling between adjacent Fe3+ ions, indicating the potential of a classical spin-liquid-like behavior. Notably, a T-linear heat capacity parameter, γ, originating from electronic contributions and with magnetic field independence up to 8 T, can be observed in the specific heat capacity measurements at low-temperature, providing further proof for the spin-liquid-like behavior. This work highlights the potential of MOF materials in geometrically frustrated systems, and will promote the research of exotic quantum physics phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chamorro, J. R.; McQueen, T. M.; Tran, T. T. Chemistry of quantum spin liquids. Chem. Rev. 2021, 121, 2898–2934.

    CAS  PubMed  Google Scholar 

  2. Nakatsuji, S.; Nambu, Y.; Tonomura, H.; Sakai, O.; Jonas, S.; Broholm, C.; Tsunetsugu, H.; Qiu, Y. M.; Maeno, Y. Spin disorder on a triangular lattice. Science 2005, 309, 1697–1700.

    ADS  CAS  PubMed  Google Scholar 

  3. Yan, S. M.; Huse, D. A.; White, S. R. Spin-liquid ground state of the S = 1/2 Kagome Heisenberg antiferromagnet. Science 2011, 332, 1173–1176.

    ADS  CAS  PubMed  Google Scholar 

  4. Bramwell, S. T.; Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 2001, 294, 1495–1501.

    ADS  CAS  PubMed  Google Scholar 

  5. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 1987, 235, 1196–1198.

    ADS  CAS  PubMed  Google Scholar 

  6. Nayak, C.; Simon, S. H.; Stern, A.; Freedman, M.; Das Sams, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083–1159.

    ADS  MathSciNet  CAS  Google Scholar 

  7. Clark, L.; Sala, G.; Maharaj, D. D.; Stone, M. B.; Knight, K. S.; Telling, M. T. F.; Wang, X. Y.; Xu, X. H.; Kim, J.; Li, Y. B. et al. Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3. Nat. Phys. 2019, 15, 262–268.

    CAS  Google Scholar 

  8. Ramirez, A. P.; Hayashi, A.; Cava, R. J.; Siddharthan, R.; Shastry, B. S. Zero-point entropy in “spin ice”. Nature 1999, 399, 333–335.

    ADS  CAS  Google Scholar 

  9. Wang, Q. S.; Shen, Y.; Pan, B. Y.; Zhang, X. W.; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M. et al. Magnetic ground state of FeSe. Nat. Commun. 2016, 7, 12182.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duan, C. R.; Sasma, K.; Maple, M. B.; Podlesnyak, A.; Zhu, J. X.; Si, Q. M.; Dai, P. C. Incommensurate spin fluctuations in the spin-triplet superconductor candidate UTe2. Phys. Rev. Lett. 2020, 125, 237003.

    ADS  CAS  PubMed  Google Scholar 

  11. Pham, H. T. B.; Choi, J. Y.; Huang, S. F.; Wang, X. B.; Claman, A.; Stodolka, M.; Yazdi, S.; Sharma, S.; Zhang, W.; Park, J. Imparting functionality and enhanced surface area to a 2D electrically conductive MOF via macrocyclic linker. J. Am. Chem. Soc. 2022, 144, 10615–10621.

    CAS  PubMed  Google Scholar 

  12. Su, Y. S.; Lamb, E. S.; Liepuoniute, I.; Chronister, A.; Stanton, A. L.; Guzman, P.; Pérez-Estrada, S.; Chang, T. Y.; Houk, K. N.; Garcia-Garibay, M. A. et al. Dipolar order in an amphidynamic crystalline metal-organic framework through reorienting linkers. Nat. Chem. 2021, 13, 278–283.

    CAS  PubMed  Google Scholar 

  13. Ehrling, S.; Reynolds, E. M.; Bon, V.; Senkovska, I.; Gorelik, T. E.; Evans, J. D.; Rauche, M.; Mendt, M.; Weiss, M. S.; Pöppl, A. et al. Adaptive response of a metal-organic framework through reversible disorder-disorder transitions. Nat. Chem. 2021, 13, 568–574.

    CAS  PubMed  Google Scholar 

  14. Jiang, W.; Liu, Z.; Mei, J. W.; Cui, B.; Liu, F. Dichotomy between frustrated local spins and conjugated electrons in a two-dimensional metal-organic framework. Nanoscale 2019, 11, 955–961.

    CAS  PubMed  Google Scholar 

  15. Huang, X.; Zhang, S.; Liu, L. Y.; Yu, L.; Chen, G. F.; Xu, W.; Zhu, D. B. Superconductivity in a copper(II)-based coordination polymer with perfect Kagome structure. Angew. Chem., Int. Ed. 2018, 57, 146–150.

    CAS  Google Scholar 

  16. Zhao, M. W.; Wang, A. Z.; Zhang, X. M. Half-metallicity of a Kagome spin lattice: The case of a manganese bis-dithiolene monolayer. Nanoscale 2013, 5, 10404–10408.

    ADS  CAS  PubMed  Google Scholar 

  17. Li, W. B.; Sun, L.; Qi, J. S.; Jarillo-Herrero, P.; Dincă, M.; Li, J. High temperature ferromagnetism in π-conjugated two-dimensional metal-organic frameworks. Chem. Sci. 2017, 8, 2859–2867.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, M. H.; Dong, R. H.; Feng, X. L. Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications. J. Am. Chem. Soc. 2020, 142, 12903–12915.

    CAS  PubMed  Google Scholar 

  19. Misumi, Y.; Yamaguchi, A.; Zhang, Z. Y.; Matsushita, T.; Wada, N.; Tsuchiizu, M.; Awaga, K. Quantum spin liquid state in a two-dimensional semiconductive metal-organic framework. J. Am. Chem. Soc. 2020, 142, 16513–16517.

    CAS  PubMed  Google Scholar 

  20. Takenaka, T.; Ishihara, K.; Roppongi, M.; Miao, Y.; Mizukami, Y.; Makita, T.; Tsurumi, J.; Watanabe, S.; Takeya, J.; Yamashita, M. et al. Strongly correlated superconductivity in a copper-based metal-organic framework with a perfect Kagome lattice. Sci. Adv. 2021, 7, eabf3996.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiang, H. J.; Kan, E. J.; Wei, S. H.; Whangbo, M. H.; Gong, X. G. Predicting the spin-lattice order of frustrated systems from first principles. Phys. Rev. B 2011, 84, 224429.

    ADS  Google Scholar 

  22. Iqbal, Y.; Becca, F.; Sorella, S.; Poilblanc, D. Gapless spin-liquid phase in the Kagome spin = 1/2 Heisenberg antiferromagnet. Phys. Rev. B 2013, 87, 060405(R).

    ADS  Google Scholar 

  23. Kermarrec, E.; Kumar, R.; Bernard, G.; Hénaff, R.; Mendels, P.; Bert, F.; Paulose, P. L.; Hazra, B. K.; Koteswararao, B. Classical spin liquid state in the S = 5/2 Heisenberg Kagome antiferromagnet Li9Fe3(P2O7)3(PO4)2. Phys. Rev. Lett. 2021, 127, 157202.

    ADS  CAS  PubMed  Google Scholar 

  24. Yunoki, S.; Sorella, S. Two spin liquid phases in the spatially anisotropic triangular Heisenberg model. Phys. Rev. B 2006, 74, 014408.

    ADS  Google Scholar 

  25. Coldea, R.; Tennant, D. A.; Tsvelik, A. M.; Tylczynski, Z. Experimental realization of a 2D fractional quantum spin liquid. Phys. Rev. Lett. 2001, 86, 1335–1338.

    ADS  CAS  PubMed  Google Scholar 

  26. Shimizu, Y.; Miyagawa, K.; Kanoda, K.; Maesato, M.; Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 2003, 91, 107001.

    ADS  CAS  PubMed  Google Scholar 

  27. Trumper, A. E. Spin-wave analysis to the spatially anisotropic Heisenberg antiferromagnet on a triangular lattice. Phys. Rev. B 1999, 60, 2987–2989.

    ADS  CAS  Google Scholar 

  28. Millange, F.; Guillou, N.; Walton, R. I.; Grenèche, J. M.; Margiolaki, I.; Férey, G. Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem. Commun. 2008, 4732–4734.

  29. Westre, T. E.; Kennepohl, P.; Dewitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 1997, 119, 6297–6314.

    CAS  Google Scholar 

  30. Wasinger, E. C.; De Groot, F. M. F.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. L-edge X-ray absorption spectroscopy of non-heme iron sites:Experimental determination of differential orbital covalency. J. Am. Chem. Soc. 2003, 125, 12894–12906.

    CAS  PubMed  Google Scholar 

  31. Crocombette, J. P.; Pollak, M.; Jollet, F.; Thromat, N.; Gautier-Soyer, M. X-ray absorption spectroscopy at the Fe L2, 3 threshold in iron oxides. Phys. Rev. B 1995, 52, 3143–3150.

    ADS  CAS  Google Scholar 

  32. Droubay, T.; Chambers, S. A. Surface-sensitive Fe 2p photoemission spectra for α-Fe2O3(0001): The influence of symmetry and crystal-field strength. Phys. Rev. B 2001, 64, 205414.

    ADS  Google Scholar 

  33. Thürmer, S.; Seidel, R.; Eberhardt, W.; Bradforth, S. E.; Winter, B. Ultrafast hybridization screening in Fe3+ aqueous solution. J. Am. Chem. Soc. 2011, 133, 12528–12535.

    PubMed  Google Scholar 

  34. Mustonen, O. H. J.; Mutch, H. M.; Walker, H. C.; Baker, P. J.; Coomer, F. C.; Perry, R. S.; Pughe, C.; Stenning, G. B. G.; Liu, C.; Dutton, S. E. et al. Valence bond glass state in the 4d1fcc antiferromagnet Ba2LuMoO6. npj Quantum Mater. 2022, 7, 74.

    ADS  CAS  Google Scholar 

  35. Erickson, A. S.; Misra, S.; Miller, G. J.; Gupta, R. R.; Schlesinger, Z.; Harrison, W. A.; Kim, J. M.; Fisher, I. R. Ferromagnetism in the Mott insulator Ba2NaO2O6. Phys. Rev. Lett. 2007, 99, 016404.

    ADS  CAS  PubMed  Google Scholar 

  36. Bastien, G.; Roslova, M.; Haghighi, M. H.; Mehlawat, K.; Hunger, J.; Isaeva, A.; Doert, T.; Vojta, M.; Büchner, B.; Wolter, A. U. B. Spin-glass state and reversed magnetic anisotropy induced by Cr doping in the Kitaev magnet α-RuCl3. Phys. Rev. B 2019, 99, 214410.

    ADS  CAS  Google Scholar 

  37. Liu, J. B.; Yuan, L.; Li, X.; Li, B. Q.; Zhao, K.; Liao, H. J.; Li, Y. S. Gapless spin liquid behavior in a Kagome Heisenberg antiferromagnet with randomly distributed hexagons of alternate bonds. Phys. Rev. B 2022, 105, 024418.

    ADS  CAS  Google Scholar 

  38. Balents, L. Spin liquids in frustrated magnets. Nature 2010, 464, 199–208.

    ADS  CAS  PubMed  Google Scholar 

  39. Yamashita, S.; Yamamoto, T.; Nakazawa, Y.; Tamura, M.; Kato, R. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nat. Commun. 2011, 2, 275.

    ADS  PubMed  Google Scholar 

  40. Mustonen, O.; Vasala, S.; Sadrollahi, E.; Schmidt, K. P.; Baines, C.; Walker, H. C.; Terasaki, I.; Litterst, F. J.; Baggio-Saitovitch, E.; Karppinen, M. Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet perovskite induced by d10−d0 cation mixing. Nat. Commun. 2018, 9, 1085.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamashita, S.; Nakazawa, Y.; Oguni, M.; Oshima, Y.; Nojiri, H.; Shimizu, Y.; Miyagawa, K.; Kanoda, K. Thermodynamic properties of a spin-1/2 spin-liquid state in a κ-type organic salt. Nat. Phys. 2008, 4, 459–462.

    CAS  Google Scholar 

  42. Mizuno, A.; Shuku, Y.; Matsushita, M. M.; Tsuchiizu, M.; Hara, Y.; Wada, N.; Shimizu, Y.; Awaga, K. 3D spin-liquid state in an organic Hyperkagome lattice of Mott dimers. Phys. Rev. Lett. 2017, 119, 057201.

    ADS  PubMed  Google Scholar 

  43. Dissanayaka Mudiyanselage, R. S.; Wang, H. Z.; Vilella, O.; Mourigal, M.; Kotliar, G.; Xie, W. W. LiYbSe2: Frustrated magnetism in the pyrochlore lattice. J. Am. Chem. Soc. 2022, 144, 11933–11937.

    CAS  PubMed  Google Scholar 

  44. Cheng, J. G.; Li, G.; Balicas, L.; Zhou, J. S.; Goodenough, J. B.; Xu, C. K.; Zhou, H. D. High-pressure sequence of Ba3NiSb2O9 structural phases: New S = 1 quantum spin liquids based on Ni2+. Phys. Rev. Lett. 2011, 107, 197204.

    ADS  CAS  PubMed  Google Scholar 

  45. Clark, L.; Orain, J. C.; Bert, F.; De Vries, M. A.; Aidoudi, F. H.; Morris, R. E.; Lightfoot, P.; Lord, J. S.; Telling, M. T. F. et al. Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride Kagome antiferromagnet [NH4]2[C7H14N][V7O6F18]. Phys. Rev. Lett. 2013, 110, 207208.

    ADS  CAS  PubMed  Google Scholar 

  46. Okamoto, Y.; Nohara, M.; Aruga-Katori, H.; Takagi, H. Spin-liquid state in the S = 1/2 hyperkagome antiferromagnet Na4Ir3O8. Phys. Rev. Lett. 2007, 99, 137207.

    ADS  PubMed  Google Scholar 

  47. Xu, Y.; Wang, L. S.; Huang, Y. Y.; Ni, J. M.; Zhao, C. C.; Dai, Y. F.; Pan, B. Y.; Hong, X. C.; Chauhan, P.; Koohpayeh, S. M. et al. Quantum critical magnetic excitations in spin-1/2 and spin-1 chain systems. Phys. Rev. X 2022, 12, 021020.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFA1600800), the National Natural Science Foundation of China (Nos. 11975234, 12075243, 12005227, 12105286, 121350122, U2032150, 12275271, 12205305, and U1932211), the Natural Science Foundation of Anhui Province (Nos. 2208085QA14 and 2208085J13), the Users with Excellence Program of Hefei Science Center CAS (Nos. 2020HSC-UE002, 2020HSC-CIP013, 2021HSC-UE002, and 2021HSC-UE003), the Major science and technology project of Anhui Province (No. 202103a05020025), the Key Program of Research and Development of Hefei Science Center, CAS (Nos. 2021HSC-KPRD002 and 2021HSC-KPRD003), the Fundamental Research Funds for the Central Universities (No. WK 2310000103), and partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. The authors would like to thank Beijing Synchrotron Radiation Facility (BSRF), Shanghai Synchrotron Radiation Facility (SSRF), and Beamlines MCD-A and MCD-B (Soochow Beamline for Energy Materials) at NSRL for the synchrotron beamtime. Numerical computations were performed on Hefei advanced computing center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Wang, Hengli Duan or Wensheng Yan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Wang, C., Zhao, J. et al. Classical spin liquid state in a rhombic lattice metal-organic framework. Nano Res. 17, 3407–3412 (2024). https://doi.org/10.1007/s12274-023-6036-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6036-9

Keywords

Navigation