Skip to main content
Log in

Estimation of some physical properties of new RuCrSb half-Heusler compound using first-principles formalism

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we have predicted the ground-state properties of the half-Heusler RuCrSb compound using the plane-wave pseudopotential method. The structural optimization signifies that the material is energetically favoured in the ferrimagnetic state in α-phase with optimized lattice parameter 6.025 Å. The positive cohesive energy as well as elastic constants indicate that the compound is thermodynamically and mechanically stable. The absence of a negative phonon dispersion curve also confirms that the sample material is dynamically durable. In order to explore the nature of bonding forces and determine the mechanical strength of the system, the elastic properties have been computed. Moreover, using the quasi-harmonic Debye model, it has been possible to determine the thermodynamical properties with regard to temperature for various pressures. For the strongly correlated d-transition electrons of the studied compound, we incorporated on-site Coulomb repulsion term (U) on GGA scheme during electronic and magnetic calculations. The studied compound reveals half-metallic performance, i.e., it conveys 100% spin polarization at the Fermi energy level (\({E}_{{\text{F}}}\)) under both GGA and GGA + U approximations. The total magnetic moments (\({M}_{{\text{t}}}\)) of the sample material is 1 \({\mu }_{B}\), which is in good agreement with the 18 Slater-Pauling rule; i.e., \({M}_{{\text{t}}}\) = \({Z}_{{\text{t}}}\) – 18. The magnetism source is predominantly from the Cr atom in the studied compound. Moreover, the electronic properties are also supported by the fermi surface, charge density distribution and the Bader charge method. As the Curie temperature (\({T}_{{\text{C}}}\)) of the studied material is observed to be higher than room temperature; the material is suitable for spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 134428

    Article  Google Scholar 

  2. Gruhn T 2010 Phys. Rev. B 82 125210

    Article  Google Scholar 

  3. Kalita D, Ram M, Limbu N and Saxena A 2022 Int. J. Quantum Chem. 122 e26951

    Article  CAS  Google Scholar 

  4. De Groot R A, Mueller F M, Engen P G V and Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    Article  Google Scholar 

  5. Ma J, Hegde V I, Munira K, Xie Y, Keshavarz S, Mildebrath D T et al 2017 Phys. Rev. B 95 024411

    Article  Google Scholar 

  6. Afaq A, Maaz H, Bakar A and Jamil M I 2019 J. Electron. Mater. 48 5323

    Article  CAS  Google Scholar 

  7. Shi F, Si M S, Xie J, Mi K, Xiao C and Luo Q 2017 J. Appl. Phys. 122 215701

    Article  Google Scholar 

  8. Nenuwe N O and Omugbe E 2023 Curr. Appl. Phys. 49 70

    Article  Google Scholar 

  9. Rai D P and Thapa R K 2013 J. Korean Phys. Soc. 62 1652

    Article  CAS  Google Scholar 

  10. Kalita D, Limbu N, Ram M, Kalita R and Saxena A 2021 Mater. Today Commun. 29 102799

    Article  CAS  Google Scholar 

  11. Kalita D, Ram M, Limbu N and Saxena A 2021 J. Phys. Condens. Matter 34 85501

    Article  Google Scholar 

  12. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al 2009 J. Phys. Condens. Matter 21 395502

    Article  PubMed  Google Scholar 

  13. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  PubMed  Google Scholar 

  14. Marzari N, Vanderbilt D, De Vita A and Payne M C 1999 Phys. Rev. Lett. 82 3296

    Article  CAS  Google Scholar 

  15. Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    Article  Google Scholar 

  16. Gunnarsson O, Andersen O K, Jepsen O and Zaanen J 1989 Phys. Rev. B 39 1708

    Article  CAS  Google Scholar 

  17. Van Den Brink J, Meinders M B J and Sawatzky G A 1995 Phys. B 206 682

    Article  Google Scholar 

  18. Dal Corso A 2016 J. Phys.: Condens. Matter 28 075401

    Google Scholar 

  19. Francisco E, Recio J M, Blanco M A, Pendás A M and Costales A 1998 J. Phys. Chem. 102 1595

    Article  CAS  Google Scholar 

  20. Kalita D, Ram M, Limbu N, Kalita R and Saxena A 2022 J. Solid State Chem. 310 122999

    Article  CAS  Google Scholar 

  21. Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 50 697

    Google Scholar 

  22. Enamullah, Sharma S K and Ahmed S S 2020 J. Phys. Condens. Matter 32 405501

  23. Ahmad R and Mehmood N 2018 J. Supercond. Nov. Magn. 31 2637

    Article  CAS  Google Scholar 

  24. Born M and Huang K 1965 Dynamical theory of crystal lattices (Oxford: Clarendon) 72 p 420

  25. Galanakis I, Mavropoulos P and Dederichs P H 2006 J. Phys. D Appl. Phys. 39 765

    Article  CAS  Google Scholar 

  26. Lifshitz M I 1960 Sov. Phys. JETP 11 1130

    Google Scholar 

  27. Van Hove L 1953 Phys. Rev. 89 1189

    Article  Google Scholar 

Download references

Acknowledgements

D Kalita acknowledges the Department of Science and Technology (DST), Government of India for providing financial assistance through INSPIRE fellowship with award number IF190898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipangkar Kalita.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, D., Saxena, A. Estimation of some physical properties of new RuCrSb half-Heusler compound using first-principles formalism. Bull Mater Sci 47, 97 (2024). https://doi.org/10.1007/s12034-024-03158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03158-8

Keywords

Navigation