Skip to main content
Log in

Co-doped Ni3S2 nanosheet array: A high-efficiency electrocatalyst for alkaline seawater oxidation

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing efficient and durable oxygen evolution reaction (OER) catalysts holds great promise for green hydrogen production via seawater electrolysis, but remains a challenge. Herein, we report a Co-doped Ni3S2 nanosheet array on Ni foam (Co-Ni3S2/NF) as a high-efficiency OER electrocatalyst for seawater. In alkaline conditions, Co-Ni3S2/NF requires an overpotential of only 368 mV to drive 100 mA·cm−2, superior to Ni3S2/NF (385 mV). Besides, it exhibits at least 50-h continuous electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.

    Article  ADS  Google Scholar 

  3. Zhou, J.; Wang, F. F.; Wang, H. Q.; Hu, S. X.; Zhou, W. J.; Liu, H. Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. 2023, 16, 2085–2093.

    Article  CAS  ADS  Google Scholar 

  4. Jin, H. Y.; Yu, H. M.; Li, H. B.; Davey, K.; Song, T.; Paik, U.; Qiao, S. Z. MXene analogue: A 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem., Int. Ed. 2022, 61, e202203850.

    Article  CAS  ADS  Google Scholar 

  5. Xiang, C. X.; Papadantonakis, K. M.; Lewis, N. S. Principles and implementations of electrolysis systems for water splitting. Mater. Horiz. 2016, 3, 169–173.

    Article  CAS  Google Scholar 

  6. Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

    Article  ADS  Google Scholar 

  7. Fu, W. Y.; Lin, Y. X.; Wang, M. S.; Si, S.; Wei, L.; Zhao, X. S.; Wei, Y. S. Sepaktakraw-like catalyst Mn-doped CoP enabling ultrastable electrocatalytic oxygen evolution at 100 mA·cm−2 in alkali media. Rare Met. 2022, 41, 3069–3077.

    Article  CAS  Google Scholar 

  8. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, H.; Xi, B. J.; Gu, Y.; Chen, W. H.; Xiong, S. L. Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473.

    Article  CAS  ADS  Google Scholar 

  10. Liu, H.; Zhang, Z.; Fang, J. J.; Li, M. X.; Sendeku, M. G.; Wang, X.; Wu, H. Y.; Li, Y. P.; Ge, J. J.; Zhuang, Z. B. et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media. Joule 2023, 7, 558–573.

    Article  CAS  Google Scholar 

  11. Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

    Article  ADS  Google Scholar 

  12. Lin, Y. C.; Dong, Y.; Wang, X. Z.; Chen, L. Electrocatalysts for the oxygen evolution reaction in acidic media. Adv. Mater. 2023, 35, 2210565.

    Article  CAS  Google Scholar 

  13. Ren, X. Z.; Li, X. H.; Peng, Y. J.; Wang, G. Z.; Yin, J.; Zhao, X. C.; Wang, W.; Wang, X. B. FeNiS2/reduced graphene oxide electrocatalysis with reconstruction to generate FeNi oxo/hydroxide as a highly-efficient water oxidation electrocatalyst. Rare Met. 2022, 41, 4127–4137.

    Article  CAS  Google Scholar 

  14. Zhong, D. Z.; Li, T.; Wang, D.; Li, L. N.; Wang, J. C.; Hao, G. Y.; Liu, G.; Zhao, Q.; Li, J. P. Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Res. 2022, 15, 162–169.

    Article  CAS  ADS  Google Scholar 

  15. Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

    Article  CAS  Google Scholar 

  16. Fang, X. D.; Wang, X. G.; Ouyang, L.; Zhang, L. C.; Sun, S. J.; Liang, Y. M.; Luo, Y. S.; Zheng, D. D.; Kang, T. R.; Liu, Q. et al. Amorphous Co-Mo-B film: A high-active electrocatalyst for hydrogen generation in alkaline seawater. Molecules 2022, 27, 7617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo, J. X.; Zheng, Y.; Hu, Z. P.; Zheng, C. Y.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S. Z.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272.

    CAS  ADS  Google Scholar 

  18. Zhang, F. H.; Liu, Y. F.; Wu, L. B.; Ning, M. H.; Song, S. W.; Xiao, X.; Hadjiev, V. G.; Fan, D. E.; Wang, D. Z.; Yu, L. et al. Efficient alkaline seawater oxidation by a three-dimensional core–shell dendritic NiCo@NiFe layered double hydroxide electrode. Mater. Today Phys. 2022, 27, 100841.

    Article  CAS  Google Scholar 

  19. Chen, J.; Zhang, L. C.; Li, J.; He, X.; Zheng, Y. Y.; Sun, S. J.; Fang, X. D.; Zheng, D. D.; Luo, Y. S.; Wang, Y. et al. High-efficiency overall alkaline seawater splitting: Using a nickel-iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 2023, 11, 1116–1122.

    Article  CAS  Google Scholar 

  20. Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

    Article  CAS  ADS  Google Scholar 

  21. Zhang, L. C.; Li, L.; Liang, J.; Fan, X. Y.; He, X.; Chen, J.; Li, J.; Li, Z. X.; Cai, Z. W.; Sun, S. J. et al. Highly efficient and stable oxygen evolution from seawater enabled by a hierarchical NiMoSx microcolumn@NiFe-layered double hydroxide nanosheet array. Inorg. Chem. Front. 2023, 10, 2766–2775.

    Article  CAS  Google Scholar 

  22. Wu, Q.; Gao, Q. P.; Shan, B.; Wang, W. Z.; Qi, Y. P.; Tai, X. S.; Wang, X.; Zheng, D. D.; Yan, H.; Ying, B. W. et al. Recent advances in self-supported transition-metal-based electrocatalysts for seawater oxidation. Acta Phys. -Chim. Sin. 2023, 39, 2303012.

    Article  Google Scholar 

  23. Zhang, F. H.; Yu, L.; Wu, L. B.; Luo, D.; Ren, Z. F. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 2021, 3, 485–498.

    Article  CAS  Google Scholar 

  24. Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.

    Article  CAS  ADS  Google Scholar 

  25. Lan, C.; Xie, H. P.; Wu, Y. F.; Chen, B.; Liu, T. Nanoengineered, Mo-doped, Ni3S2 electrocatalyst with increased Ni–S coordination for oxygen evolution in alkaline seawater. Energy Fuels 2022, 36, 2910–2917.

    Article  CAS  Google Scholar 

  26. Liu, J. Y.; Liu, X.; Shi, H.; Luo, J. H.; Wang, L.; Liang, J. S.; Li, S. Z.; Yang, L. M.; Wang, T. Y.; Huang, Y. H. et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl. Catal. B:Environ. 2022, 302, 120862.

    Article  CAS  Google Scholar 

  27. Yang, C. X.; Dong, K.; Zhang, L. C.; He, X.; Chen, J.; Sun, S. J.; Yue, M.; Zhang, H.; Zhang, M.; Zheng, D. D. et al. Improved alkaline seawater splitting of NiS nanosheets by iron doping. Inorg. Chem. 2023, 62, 7976–7981.

    Article  CAS  PubMed  Google Scholar 

  28. Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

    Article  CAS  ADS  Google Scholar 

  29. Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

    Article  Google Scholar 

  30. Ma, T. F.; Xu, W. W.; Li, B. R.; Chen, X.; Zhao, J. J.; Wan, S. S.; Jiang, K.; Zhang, S. X.; Wang, Z. F.; Tian, Z. Q. et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem., Int. Ed. 2021, 60, 22740–22744.

    Article  CAS  Google Scholar 

  31. Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Ren, J. T.; Chen, L.; Tian, W. W.; Song, X. L.; Kong, Q. H.; Wang, H. Y.; Yuan, Z. Y. Rational synthesis of core-shell-structured nickel sulfide-based nanostructures for efficient seawater electrolysis. Small 2023, 19, 2300194.

    Article  CAS  Google Scholar 

  33. Zhou, Q. Q.; Li, T. T.; Wang, J. Y.; Guo, F. Y.; Zheng, Y. Q. Hierarchical Cu2S NRs@CoS core–shell structure and its derivative towards synergistic electrocatalytic water splitting. Electrochim. Acta 2019, 296, 1035–1041.

    Article  CAS  Google Scholar 

  34. Dang, K.; Zhang, S. H.; Wang, X. W.; Sun, W. M.; Wang, L. G.; Tian, Y.; Zhan, S. H. Cobalt diselenide (001) surface with short-range Co–Co interaction triggering high-performance electrocatalytic oxygen evolution. Nano Res. 2021, 14, 4848–4856.

    Article  CAS  ADS  Google Scholar 

  35. Huang, S. C.; Meng, Y. Y.; Cao, Y. F.; Yao, F.; He, Z. J.; Wang, X. X.; Pan, H.; Wu, M. M. Amorphous NiWO4 nanoparticles boosting the alkaline hydrogen evolution performance of Ni3S2 electrocatalysts. Appl. Catal. B: Environ. 2020, 274, 119120.

    Article  CAS  Google Scholar 

  36. He, X.; Hu, L.; Xie, L. S.; Li, Z. R.; Chen, J.; Li, X. H.; Li, J.; Zhang, L. C.; Fang, X. D.; Zheng, D. D. et al. Ambient ammonia synthesis via nitrite electroreduction over NiS2 nanoparticles-decorated TiO2 nanoribbon array. J. Colloid Interface Sci. 2023, 634, 86–92.

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Zhang, G.; Feng, Y. S.; Lu, W. T.; He, D.; Wang, C. Y.; Li, Y. K.; Wang, X. Y.; Cao, F. F. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal. 2018, 8, 5431–5441.

    Article  CAS  Google Scholar 

  38. Huang, C. Q.; Zhou, Q. C.; Duan, D. S.; Yu, L.; Zhang, W.; Wang, Z. Z.; Liu, J.; Peng, B. W.; An, P. F.; Zhang, J. et al. The rapid self-reconstruction of Fe-modified Ni hydroxysulfide for efficient and stable large-current-density water/seawater oxidation. Energy Environ. Sci. 2022, 15, 4647–4658.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Deputy for Research & Innovation, Ministry of Education through Initiative of Institutional Funding at University of Ha’il–Saudi Arabia through project number IFP-22 098.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed S. Hamdy, Jun Liu or Xuping Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, M., He, X., Sun, S. et al. Co-doped Ni3S2 nanosheet array: A high-efficiency electrocatalyst for alkaline seawater oxidation. Nano Res. 17, 1050–1055 (2024). https://doi.org/10.1007/s12274-023-6002-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6002-6

Keywords

Navigation