Skip to main content
Log in

Kinetically and thermodynamically expediting elementary steps via high-valence Cr-incorporated of nickel selenide for water electrolysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing high-performance electrocatalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential to reduce the activation barrier and optimize free adsorption energy of reactive intermediates. Herein, we report that incorporating high-valence Cr into NiSe2 (CrxNi1−xSe2) kinetically and thermodynamically expedites elementary steps of both HER and OER. The as-prepared Cr0.05Ni0.95Se2 catalyst displays excellent HER and OER activities, with low overpotentials of 89 and 272 mV at the current density of 10 mA·cm−2 (j10), respectively, and remains stable during operation for 30 h. A low cell voltage of only 1.59 V is required to drive j10 in alkaline media. In situ Raman spectroscopy reveals that Cr incorporation facilitates the formation of NiOOH active species during the OER process. Meanwhile, theoretical explorations demonstrate that high-valence Cr incorporation efficiently accelerates water dissociation kinetics and improves H* adsorption during HER process, lowering the activation barrier of OER and optimizing the adsorption energy of oxygen-based intermediate, thus kinetically and thermodynamically enhancing the intrinsic performance of NiSe2 for over water splitting. This strategy provides a new horizon to design transition metal based electrocatalysts in the clean energy field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

    Article  CAS  ADS  Google Scholar 

  2. Guo, L. L.; Yu, Q. P.; Zhai, X. J.; Chi, J. Q.; Cui, T.; Zhang, Y.; Lai, J. P.; Wang, L. Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater. Nano Res. 2022, 15, 8846–8856.

    Article  CAS  ADS  Google Scholar 

  3. Wang, Q. Q.; Li, J. Q.; Li, Y. J.; Shao, G. M.; Jia, Z.; Shen, B. L. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res. 2022, 15, 8751–8759.

    Article  CAS  ADS  Google Scholar 

  4. Wu, L. B.; Zhang, F. H.; Song, S. W.; Ning, M. H.; Zhu, Q.; Zhou, J. Q.; Gao, G. H.; Chen, Z. Y.; Zhou, Q. C.; Xing, X. X. et al. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics. Adv. Mater. 2022, 34, 2201774.

    Article  CAS  Google Scholar 

  5. Xu, W. J.; Chang, J. F.; Cheng, Y. G.; Liu, H. Q.; Li, J. F.; Ai, Y. J.; Hu, Z. N.; Zhang, X. Y.; Wang, Y. M.; Liang, Q. L. et al. A multi-step induced strategy to fabricate core–shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Res. 2022, 15, 965–971.

    Article  CAS  ADS  Google Scholar 

  6. Wu, J. D.; Fan, J. C.; Zhao, X.; Wang, Y.; Wang, D. W.; Liu, H. T.; Gu, L.; Zhang, Q. H.; Zheng, L. R.; Singh, D. J. et al. Atomically dispersed MoOx on rhodium metallene boosts electrocatalyzed alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202207512.

    Article  CAS  Google Scholar 

  7. Yang, Q. F.; Zhu, B. T.; Wang, F.; Zhang, C. J.; Cai, J. H.; Jin, P.; Feng, L. Ru/NC heterointerfaces boost energy-efficient production of green H2 over a wide pH range. Nano Res. 2022, 15, 5134–5142.

    Article  CAS  ADS  Google Scholar 

  8. Xu, Y. C.; Wei, S. T.; Gan, L. F.; Zhang, L.; Wang, F.; Wu, Q.; Cui, X. Q.; Zheng, W. T. Amorphous carbon interconnected ultrafine CoMnP with enhanced Co electron delocalization yields Pt-like activity for alkaline water electrolysis. Adv. Funct. Mater. 2022, 32, 2112623.

    Article  CAS  Google Scholar 

  9. Fan, H. F.; Jiao, D. X.; Fan, J. C.; Wang, D. W.; Zaman, B.; Zhang, W.; Zhang, L.; Zheng, W. T.; Cui, X. Q. Enhancing water-dissociation kinetics and optimizing intermediates adsorption free energy of cobalt phosphide via high-valence Zr incorporating for alkaline water electrolysis. J. Energy Chem. 2023, 83, 119–127.

    Article  CAS  Google Scholar 

  10. Zheng, Y. Y.; Tian, Y. R.; Sarwar, S.; Luo, J. J.; Zhang, X. Y. Carbon nanotubes decorated NiSe2 nanosheets for high-performance supercapacitors. J. Power Sources 2020, 452, 227793.

    Article  CAS  Google Scholar 

  11. Zheng, X. Y.; Sun, S. C.; Liu, Y.; Li, D.; Tian, D.; Zhu, J. J.; Jiang, D. L. Synergistic modulation of NiSe2 by doping with chromium and nitrogen for high-efficiency overall water splitting. Appl. Surf. Sci. 2023, 609, 155406.

    Article  CAS  Google Scholar 

  12. Sun, Y. Q.; Xu, K.; Wei, Z. X.; Li, H. L.; Zhang, T.; Li, X. Y.; Cai, W. P.; Ma, J. M.; Fan, H. J.; Li, Y. Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1802121.

    Article  Google Scholar 

  13. Wang, T. T.; Gao, D. Q.; Xiao, W.; Xi, P. X.; Xue, D. S.; Wang, J. Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Res. 2018, 11, 6051–6061.

    Article  CAS  Google Scholar 

  14. Zhou, J.; Yuan, L. W.; Wang, J. W.; Song, L. L.; You, Y.; Zhou, R.; Zhang, J. J.; Xu, J. Combinational modulations of NiSe2 nanodendrites by phase engineering and iron-doping towards an efficient oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 8113–8120.

    Article  CAS  Google Scholar 

  15. Ni, S.; Qu, H. N.; Xu, Z. H.; Zhu, X. Y.; Xing, H. F.; Wang, L.; Yu, J. M.; Liu, H. Z.; Chen, C. M.; Yang, L. R. Interfacial engineering of the NiSe2/FeSe2 p–p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B: Environ. 2021, 299, 120638.

    Article  CAS  Google Scholar 

  16. Gu, C.; Hu, S. J.; Zheng, X. S.; Gao, M. R.; Zheng, Y. R.; Shi, L.; Gao, Q.; Zheng, X.; Chu, W. S.; Yao, H. B. et al. Synthesis of sub-2 nm iron-doped NiSe2 nanowires and their surface-confined oxidation for oxygen evolution catalysis. Angew. Chem. 2018, 130, 4084–4088.

    Article  ADS  Google Scholar 

  17. Xu, W. C.; Fan, G. L.; Zhu, S. L.; Liang, Y. Q.; Cui, Z. D.; Li, Z. Y.; Jiang, H.; Wu, S. L.; Cheng, F. Y. Electronic structure modulation of nanoporous cobalt phosphide by carbon doping for alkaline hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2107333.

    Article  CAS  Google Scholar 

  18. Ma, Y. F.; Chen, M.; Geng, H. B.; Dong, H. F.; Wu, P.; Li, X. M.; Guan, G. Q.; Wang, T. J. Synergistically tuning electronic structure of porous β-Mo2C spheres by Co doping and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity. Adv. Funct. Mater. 2020, 30, 2000561.

    Article  CAS  Google Scholar 

  19. Fan, H. F.; Jia, J. J.; Wang, D. W.; Fan, J. C.; Wu, J. D.; Zhao, J. X.; Cui, X. Q. High-valence Zr-incorporated nickel phosphide boosting reaction kinetics for highly efficient and robust overall water splitting. Chem. Eng. J. 2023, 455, 140908.

    Article  CAS  Google Scholar 

  20. Zhou, Y. N.; Hu, W. H.; Zhen, Y. N.; Dong, B.; Dong, Y. W.; Fan, R. Y.; Liu, B.; Liu, D. P.; Chai, Y. M. Metallic MoOx layrr promoting high-valence Mo doping into CoP nanowires with ultrahigh activity for hydrogen evolution at 2000 mA·cm−2. Appl. Catal. B: Environ. 2022, 309, 121230.

    Article  CAS  Google Scholar 

  21. Li, M. Y.; Cai, B. H.; Tian, R. M.; Yu, X. J.; Breese, M. B. H.; Chu, X. Z.; Han, Z. J.; Li, S. A.; Joshi, R.; Vinu, A. et al. Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Chem. Eng. J. 2021, 409, 128158.

    Article  CAS  Google Scholar 

  22. Wang, M. H.; Lou, Z. X.; Wu, X. F.; Liu, Y. W.; Zhao, J. Y.; Sun, K. Z.; Li, W. X.; Chen, J. C.; Yuan, H. Y.; Zhu, M. H. et al. Operando high-valence Cr-modified NiFe hydroxides for water oxidation. Small 2022, 18, 2200303.

    Article  CAS  Google Scholar 

  23. Zhang, L. P.; Zhang, J. T.; Fang, J. J.; Wang, X. Y.; Yin, L. K.; Zhu, W.; Zhuang, Z. B. Cr-doped CoP nanorod arrays as high-performance hydrogen evolution reaction catalysts at high current density. Small 2021, 17, 2100832.

    Article  CAS  Google Scholar 

  24. Li, W. F.; Jiang, Y.; Li, Y. R.; Gao, Q.; Shen, W.; Jiang, Y. M.; He, R. X.; Li, M. Electronic modulation of CoP nanoarrays by Cr-doping for efficient overall water splitting. Chem. Eng. J. 2021, 425, 130651.

    Article  CAS  Google Scholar 

  25. Shi, Y. M.; Du, W.; Zhou, W.; Wang, C. H.; Lu, S. S.; Lu, S. Y.; Zhang, B. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22470–22474.

    Article  CAS  Google Scholar 

  26. Zhong, H. Y.; Wang, X. P.; Sun, G. X.; Tang, Y. X.; Tan, S. D.; He, Q.; Zhang, J.; Xiong, T.; Diao, C. Z.; Yu, Z. G. et al. Optimization of oxygen evolution activity by tuning \({{\rm{e}}^ \star }_{\rm{g}}\) band broadening in nickel oxyhydroxide. Energy Environ. Sci. 2023, 16, 641–652.

    Article  CAS  Google Scholar 

  27. Zhang, X. R.; Sun, C. Y.; Xu, S. S.; Huang, M. R.; Wen, Y.; Shi, X. R. DFT-assisted rational design of CoMx/CC (M = Fe, Mn, and Ni) as efficient electrocatalyst for wide pH range hydrogen evolution and oxygen evolution. Nano Res. 2022, 15, 8897–8907.

    Article  CAS  ADS  Google Scholar 

  28. Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E. Importance of short-range versus long-range Hartree–Fock exchange for the performance of hybrid density functionals. J. Chem. Phys. 2006, 125, 074106.

    Article  PubMed  ADS  Google Scholar 

  29. Zhou, Y. N.; Chen, L. L.; Sheng, L.; Luo, Q. Q.; Zhang, W. H.; Yang, J. L. Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: A DFT study. Nano Res. 2022, 15, 7994–8000.

    Article  CAS  ADS  Google Scholar 

  30. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, Y. N.; Liu, H. J.; Shi, Z. N.; Zhou, J. C.; Dong, B.; Zhao, H. Y.; Wang, F. G.; Yu, J. F.; Chai, Y. M. Microwave-assisted molybdenum-nickel alloy for efficient water electrolysis under large current density through spillover and Fe doping. Nano Res. 2022, 15, 5873–5883.

    Article  CAS  ADS  Google Scholar 

  32. Wang, Y.; Li, X. P.; Zhang, M. M.; Zhang, J. F.; Chen, Z. L.; Zheng, X. R.; Tian, Z. L.; Zhao, N. Q.; Han, X. P.; Zaghib, K. et al. Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet@NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 2022, 34, 2107053.

    Article  CAS  Google Scholar 

  33. Kim, J.; Jung, H.; Jung, S. M.; Hwang, J.; Kim, D. Y.; Lee, N.; Kim, K. S.; Kwon, H.; Kim, Y. T.; Han, J. W. et al. Tailoring binding abilities by incorporating oxophilic transition metals on 3D nanostructured Ni arrays for accelerated alkaline hydrogen evolution reaction. J. Am. Chem. Soc. 2021, 143, 1399–1408.

    Article  CAS  PubMed  Google Scholar 

  34. Chu, Y. C.; Chang, C. J.; Zhu, Y. P.; Lin, S. C.; Tung, C. W.; Chen, T. L.; Chen, H. M. Anionic effects on metal pair of Se-doped nickel diphosphide for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 14247–14255.

    Article  CAS  Google Scholar 

  35. Chen, Z. S.; Wei, D. L.; Li, Q.; Wang, X. X.; Yu, S. J.; Liu, L.; Liu, B.; Xie, S. Y.; Wang, J.; Chen, D. Y. et al. Macroscopic and microscopic investigation of Cr(VI) immobilization by nanoscaled zero-valent iron supported zeolite MCM-41 via batch, visual, XPS and EXAFS techniques. J. Cleaner Prod. 2018, 181, 745–752.

    Article  CAS  Google Scholar 

  36. Yang, S. Y.; Shi, D. R.; Wang, T.; Yue, X. Y.; Zheng, L.; Zhang, Q. H.; Gu, L.; Yang, X. Q.; Shadike, Z.; Li, H. et al. High-rate cathode CrSSe based on anion reactions for lithium-ion batteries. J. Mater. Chem. A 2020, 8, 25739–25745.

    Article  CAS  Google Scholar 

  37. Sikora, M.; Kapusta, C.; Maksymowicz, L.; Lubecka, M.; Cięciwa, B.; Szymczak, R.; Welter, E.; Borowiec, M.; Zając, D. EXAFS study of indium doped magnetic semiconductor CdCr2Se4. J. Alloys Compd. 2004, 362, 151–155.

    Article  CAS  Google Scholar 

  38. Li, G.; Feng, S. Y.; Wang, C. T.; Deng, P. L.; Li, J. Co-NiSe2/NF nanosheet for efficient hydrogen evolution reaction. Catal. Commun. 2022, 165, 106443.

    Article  CAS  Google Scholar 

  39. Zhang, C. Q.; Zhang, Y.; Zhou, S.; Li, C. X. Self-supported iron-doping NiSe2 nanowrinkles as bifunctional electrocatalysts for electrochemical water splitting. J. Alloys Compd. 2020, 818, 152833.

    Article  CAS  Google Scholar 

  40. Gao, J. Y.; Ma, H. Q.; Luo, X. Y.; Yu, L. Q.; Gu, X. P.; Liu, J. H. Boosting electrocatalytic activity of NiSe2 nanosheets by anion–cation dual-doping for highly efficient hydrogen evolution reaction. J. Alloys Compd. 2023, 933, 167793.

    Article  CAS  Google Scholar 

  41. Xu, H. K.; Lu, K. B.; Jiang, C. H.; Wei, X. F.; Wang, Z. F.; Ouyang, Y. G.; Dai, F. N. Electronic regulation of a core-shell NiSe2 catalyst by Co doping to accelerate hydrogen evolution. CrystEngComm 2022, 24, 8005–8010.

    Article  CAS  Google Scholar 

  42. Dang, Y. C.; Wang, G. Q.; Li, X.; Ma, X.; Yue, F.; Wang, C. T.; Gao, L. J.; Fu, F. Enhanced alkaline/seawater hydrogen evolution reaction performance of NiSe2 by ruthenium and tungsten bimetal doping. Int. J. Hydrogen Energy 2023, 48, 17035–17044.

    Article  CAS  Google Scholar 

  43. Teng, X.; Guo, L. X.; Ji, L. L.; Wang, J. Y.; Niu, Y. L.; Hu, Z. B.; Chen, Z. F. Self-growing NiFe-based hybrid nanosheet arrays on Ni nanowires for overall water splitting. ACS Appl. Energy Mater. 2019, 2, 5465–5471.

    Article  CAS  Google Scholar 

  44. Hu, X. B.; Zhou, Q. W.; Cheng, P. F.; Su, S. Q.; Wang, X.; Gao, X. S.; Zhou, G. F.; Zhang, Z.; Liu, J. M. Nickel-iron selenide polyhedral nanocrystal with optimized surface morphology as a high-performance bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2019, 488, 326–334.

    Article  CAS  ADS  Google Scholar 

  45. Chen, L. L.; Jang, H.; Kim, M. G.; Qin, Q.; Liu, X. E.; Cho, J. Fe,Al-co-doped NiSe2 nanoparticles on reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale 2020, 12, 13680–13687.

    Article  CAS  PubMed  Google Scholar 

  46. Li, Y. X.; Chen, R.; Yan, D. F.; Wang, S. Y. Regulation of morphology and electronic structure of NiSe2 by Fe for high effective oxygen evolution reaction. Chem. Asian J. 2020, 15, 3845–3852.

    Article  CAS  PubMed  Google Scholar 

  47. Chi, J. Q.; Shang, X.; Liang, F.; Dong, B.; Li, X.; Liu, Y. R.; Yan, K. L.; Gao, W. K.; Chai, Y. M.; Liu, C. G. Facile synthesis of pyrite-type binary nickel iron diselenides as efficient electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2017, 401, 17–24.

    Article  CAS  ADS  Google Scholar 

  48. Zhang, C.; Li, T.; Wei, Q. Z.; Cheng, Z. H.; Wu, J.; Ma, X. X.; Chen, Z. H.; Liu, K. Y.; Zhang, T.; Liu, J. H. Fe-doped NiSe2 nanoparticles as efficient and stable electrocatalysts for oxygen evolution reaction. Chem. Phys. Lett. 2022, 808, 140126.

    Article  CAS  Google Scholar 

  49. Zhuang, W. C.; Du, M. L.; Lu, X. H.; Chen, Z. Y.; Huang, Z. J.; Liu, D. S.; Cheng, W. J.; Tian, L. Fe doping modifying electronic structure of NiSe2 for boosting electrocatalytic oxygen evolution reaction. Ionics 2023, 29, 1069–1076.

    Article  CAS  Google Scholar 

  50. Zhu, M.; Yan, Q.; Lu, Q.; Xue, Y. Q.; Yan, Y. D.; Yin, J. L.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J. et al. Iron-doped NiSe2in-situ grown on graphene as an efficient electrocatalyst for oxygen evolution reaction. J. Electroanal. Chem. 2020, 866, 114134.

    Article  CAS  Google Scholar 

  51. Lv, L.; Li, Z. S.; Ruan, Y. J.; Chang, Y. X.; Ao, X.; Li, J. G.; Yang, Z. X.; Wang, C. D. Nickel-iron diselenide hollow nanoparticles with strongly hydrophilic surface for enhanced oxygen evolution reaction activity. Electrochim. Acta 2018, 286, 172–178.

    Article  CAS  ADS  Google Scholar 

  52. Zheng, X. R.; Han, X. P.; Cao, Y. H.; Zhang, Y.; Nordlund, D.; Wang, J. H.; Chou, S. L.; Liu, H.; Li, L. L.; Zhong, C. et al. Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis. Adv. Mater. 2020, 32, 2000607.

    Article  CAS  Google Scholar 

  53. Yang, S. J.; Qin, L. S.; Zhang, W.; Cao, R. The mechanism of water oxidation from Mn-based heterogeneous electrocatalysts. Chin. J. Struct. Chem. 2022, 41, 2204022–2204033.

    CAS  Google Scholar 

  54. Zhang, X. P.; Chandra, A.; Lee, Y. M.; Cao, R.; Ray, K.; Nam, W. Transition metal-mediated O–O bond formation and activation in chemistry and biology. Chem. Soc. Rev. 2021, 50, 4804–4811.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, X. P.; Wang, H. Y.; Zheng, H. Q.; Zhang, W.; Cao, R. O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chin. J. Catal. 2021, 42, 1253–1268.

    Article  CAS  Google Scholar 

  56. Exner, K. S. Why the optimum thermodynamic free-energy landscape of the oxygen evolution reaction reveals an asymmetric shape? Mater. Today Energy 2021, 21, 100831.

    Article  CAS  Google Scholar 

  57. Li, X. L.; Zhang, X. P.; Guo, M.; Lv, B.; Guo, K.; Jin, X. T.; Zhang, W.; Lee, Y. M.; Fukuzumi, S.; Nam, W. et al. Identifying intermediates in electrocatalytic water oxidation with a manganese corrole complex. J. Am. Chem. Soc. 2021, 143, 14613–14621.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 12034002, 22279044, and 22202080), Jilin Province Science and Technology Development Program (No. 20210301009GX), and the fellowship of China Postdoctoral Science Foundation (No. 2022M711296). The work was carried out at LvLiang Cloud Computing Center of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhang, Weitao Zheng or Xiaoqiang Cui.

Electronic Supplementary Material

12274_2023_5992_MOESM1_ESM.pdf

Kinetically and thermodynamically expediting elementary steps via high-valence Cr-incorporated of nickel selenide for water electrolysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Jiao, D., Fan, J. et al. Kinetically and thermodynamically expediting elementary steps via high-valence Cr-incorporated of nickel selenide for water electrolysis. Nano Res. 17, 1199–1208 (2024). https://doi.org/10.1007/s12274-023-5992-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5992-4

Keywords

Navigation