Skip to main content
Log in

Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Seawater electrolysis could address the water scarcity issue and realize the grid-scale production of carbon-neutral hydrogen, while facing the challenge of high energy consumption and chloride corrosion. Thermodynamically more favorable hydrazine oxidation reaction (HzOR) assisted water electrolysis is efficiency for energy-saving and chlorine-free hydrogen production. Herein, the MoNi alloys supported on MoO2 nanorods with enlarged hollow diameter on Ni foam (MoNi@NF) are synthesized, which is constructed by limiting the outward diffusion of Ni via annealing and thermal reduction of NiMoO4 nanorods. When coupling HzOR and hydrogen evolution reaction (HER) by employing MoNi@NF as both anode and cathode in two-electrode seawater system, a low cell voltage of 0.54 V is required to achieve 1,000 mA·cm−2 and with long-term durability for 100 h to keep above 100 mA·cm−2 and nearly 100% Faradaic efficiency. It can save 2.94 W·h to generate per liter H2 relative to alkaline seawater electrolysis with 37% lower energy equivalent input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, S. L.; Wang, D. W.; Amal, R.; Dai, L. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 2019, 31, 1801526.

    Article  Google Scholar 

  2. Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

    Article  CAS  Google Scholar 

  3. Wang, F.; Niu, S. W.; Liang, X. Q.; Wang, G. M.; Chen, M. H. Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. Nano Res. 2022, 15, 2855–2861.

    Article  CAS  Google Scholar 

  4. Zhang, X. Y.; Zhang, S.; Li, J.; Wang, E. K. One-step synthesis of well-structured NiS-Ni2P2S6 nanosheets on nickel foam for efficient overall water splitting. J. Mater. Chem. A 2017, 5, 22131–22136.

    Article  CAS  Google Scholar 

  5. Liu, W. X.; Yu, L. H.; Yin, R. L.; Xu, X. L.; Feng, J. X.; Jiang, X.; Zheng, D.; Gao, X. L.; Gao, X. B.; Que, W. B. et al. Non-3D metal modulation of a 2D Ni-Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting. Small 2020, 16, 1906775.

    Article  CAS  Google Scholar 

  6. Jiao, L.; Zhou, Y. X.; Jiang, H. L. Metal-organic framework-based CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 2016, 7, 1690–1695.

    Article  CAS  Google Scholar 

  7. Yu, W. L.; Gao, Y. X.; Chen, Z.; Zhao, Y.; Wu, Z. X.; Wang, L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin. J. Catal. 2021, 42, 1876–1902.

    Article  CAS  Google Scholar 

  8. Zhao, Q. L.; Wang, Y. A.; Lai, W. H.; Xiao, F.; Lyu, Y. X.; Liao, C. Z.; Shao, M. H. Approaching a high-rate and sustainable production of hydrogen peroxide: Oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 2021, 14, 5444–5456.

    Article  CAS  Google Scholar 

  9. Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.

    Article  CAS  Google Scholar 

  10. Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.

    Article  CAS  Google Scholar 

  11. Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

    Article  CAS  Google Scholar 

  12. Chen, L. F.; Hou, C. C.; Zou, L. L.; Kitta, M.; Xu, Q. Uniformly bimetal-decorated holey carbon nanorods derived from metal-organic framework for efficient hydrogen evolution. Sci. Bull. 2021, 66, 170–178.

    Article  CAS  Google Scholar 

  13. Menezes, P. W.; Panda, C.; Loos, S.; Bunschei-Bruns, F.; Walter, C.; Schwarze, M.; Deng, X. H.; Dau, H.; Driess, M. A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. Energy Environ. Sci. 2018, 11, 1287–1298.

    Article  CAS  Google Scholar 

  14. Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

    Article  Google Scholar 

  15. Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Cheng, F. Y.; Weiss, P. S.; Chen, J. Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem. Mater. 2017, 29, 8539–8547.

    Article  CAS  Google Scholar 

  16. Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281–2287.

    Article  CAS  Google Scholar 

  17. Lv, C. N.; Zhang, L.; Huang, X. H.; Zhu, Y. X.; Zhang, X.; Hu, J. S.; Lu, S. Y. Double functionalization of N-doped carbon carved hollow nanocubes with mixed metal phosphides as efficient bifunctional catalysts for electrochemical overall water splitting. Nano Energy 2019, 65, 103995.

    Article  CAS  Google Scholar 

  18. Song, Y. Y.; Cheng, J. L.; Liu, J.; Ye, Q.; Gao, X.; Lu, J. J.; Cheng, Y. L. Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density. Appl. Catal. B Environ. 2021, 298, 120488.

    Article  CAS  Google Scholar 

  19. Xing, J. N.; Lin, F.; Huang, L. T.; Si, Y. C.; Wang, Y. J.; Jiao, L. F. Coupled cobalt-doped molybdenum carbide@N-doped carbon nanosheets/nanotubes supported on nickel foam as a binder-free electrode for overall water splitting. Chin. J. Catal. 2019, 40, 1352–1359.

    Article  CAS  Google Scholar 

  20. Wu, L. B.; Yu, L.; Zhang, F. H.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.

    Article  CAS  Google Scholar 

  21. Zhao, Y.; Gao, Y. X.; Chen, Z.; Li, Z. J.; Ma, T. Y.; Wu, Z. X.; Wang, L. Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Appl. Catal. B Environ. 2021, 297, 120395.

    Article  CAS  Google Scholar 

  22. Yao, M. Q.; Wang, B. J.; Sun, B. L.; Luo, L. F.; Chen, Y. J.; Wang, J. W.; Wang, N.; Komarneni, S.; Niu, X. B.; Hu, W. B. et al. Rational design of self-supported Cu@WC core—shell mesoporous nanowires for pH-universal hydrogen evolution reaction. Appl. Catal. B Environ. 2021, 280, 119451.

    Article  CAS  Google Scholar 

  23. Dong, B.; Xie, J. Y.; Tong, Z.; Chi, J. Q.; Zhou, Y. N.; Ma, X.; Lin, Z. Y.; Wang, L.; Chai, Y. M. Synergistic effect of metallic nickel and cobalt oxides with nitrogen-doped carbon nanospheres for highly efficient oxygen evolution. Chin. J. Catal. 2020, 41, 1782–1789.

    Article  CAS  Google Scholar 

  24. Li, Y. P.; Li, J. M.; Qian, Q. Z.; Jin, X.; Liu, Y.; Li, Z. Y.; Zhu, Y.; Guo, Y. M.; Zhang, G. Q. Superhydrophilic Ni-based multicomponent nanorod-confined-nanoflake array electrode achieves waste-battery-driven hydrogen evolution and hydrazine oxidation. Small 2021, 17, 2008148.

    Article  CAS  Google Scholar 

  25. Chala, S. A.; Tsai, M. C.; Olbasa, B. W.; Lakshmanan, K.; Huang, W. H.; Su, W. N.; Liao, Y. F.; Lee, J. F.; Dai, H. J.; Hwang, B. J. Tuning dynamically formed active phases and catalytic mechanisms of in situ electrochemically activated layered double hydroxide for oxygen evolution reaction. ACS Nano 2021, 15, 14996–15006.

    Article  CAS  Google Scholar 

  26. Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

    Article  CAS  Google Scholar 

  27. Dang, Y. L.; Wu, T. L.; Tan, H. Y.; Wang, J. L.; Cui, C.; Kerns, P.; Zhao, W.; Posada, L.; Wen, L. Y.; Suib, S. L. Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution. Energy Environ. Sci. 2021, 14, 5433–5443.

    Article  CAS  Google Scholar 

  28. Tang, T.; Jiang, W. J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y. Y.; Jin, S. F.; Gao, F.; Wan, L. J.; Hu, J. S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 2017, 139, 8320–8328.

    Article  CAS  Google Scholar 

  29. Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

    Article  CAS  Google Scholar 

  30. Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

    Article  Google Scholar 

  31. Su, L. X.; Gong, D.; Yao, N.; Li, Y. B.; Li, Z.; Luo, W. Modification of the intermediate binding energies on Ni/Ni3N heterostructure for enhanced alkaline hydrogen oxidation reaction. Adv. Funct. Mater. 2021, 31, 2106156.

    Article  CAS  Google Scholar 

  32. Song, L. T.; Zheng, T. L.; Zheng, L. R.; Lu, B.; Chen, H. Q.; He, Q. G.; Zheng, W. Z.; Hou, Y.; Lian, J. L.; Wu, Y. et al. Cobalt-doped basic iron phosphate as bifunctional electrocatalyst for long-life and high-power-density rechargeable zinc-air batteries. Appl. Catal. B Environ. 2022, 300, 120712.

    Article  CAS  Google Scholar 

  33. Singh, V. K.; Gupta, U.; Mukherjee, B.; Chattopadhyay, S.; Das, S. MoS2 nanosheets on MoNi4/MoO2 nanorods for hydrogen evolution. ACS Appl. Nano Mater. 2021, 4, 886–896.

    Article  CAS  Google Scholar 

  34. Wu, X. F.; Li, J. W.; Li, Y.; Wen, Z. H. NiFeP-MoO2 hybrid nanorods on nickel foam as high-activity and high-stability electrode for overall water splitting. Chem. Eng. J. 2021, 409, 128161.

    Article  CAS  Google Scholar 

  35. Kamp, C. J.; Perez Garza, H. H.; Fredriksson, H.; Kasemo, B.; Andersson, B.; Skoglundh, M. Nanofabricated catalyst particles for the investigation of catalytic carbon oxidation by oxygen spillover. Langmuir 2017, 33, 4903–4912.

    Article  CAS  Google Scholar 

  36. Ananyev, M. V.; Porotnikova, N. M.; Eremin, V. A.; Kurumchin, E. K. Interaction of O2 with LSM-YSZ composite materials and oxygen spillover effect. ACS Catal. 2021, 11, 4247–4262.

    Article  CAS  Google Scholar 

  37. Gaigneaux, E. M.; Ruiz, P.; Delmon, B. Further on the mechanism of the synergy between MoO3 and α-Sb2O4 in the selective oxidation of isobutene to methacrolein: Reconstuction of MoO3 via spillover oxygen. Catal. Today 1996, 32, 37–46.

    Article  CAS  Google Scholar 

  38. Meng, L. S.; Li, L. P.; Wang, J. H.; Fu, S. X.; Zhang, Y. L.; Li, J.; Xue, C. L.; Wei, Y. H.; Li, G. S. Valence-engineered MoNi4/MoOx@NF as a Bi-functional electrocatalyst compelling for urea-assisted water splitting reaction. Electrochim. Acta 2020, 350, 136382.

    Article  CAS  Google Scholar 

  39. Yan, G.; Gu, Y. F.; Shaga, A.; Wang, K.; Zhan, L. J.; Liu, Z. M. Improving hydrogen evolution activity of two-dimensional nanosheets MoNi4/MoO2.5-NF self-supporting electrocatalyst by electrochemical-cycling activation. J. Mater. Sci. 2021, 56, 6945–6954.

    Article  CAS  Google Scholar 

  40. Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

    Article  CAS  Google Scholar 

  41. Wang, M.; Yang, H.; Shi, J. N.; Chen, Y. F.; Zhou, Y.; Wang, L. G.; Di, S. J.; Zhao, X.; Zhong, J.; Cheng, T. et al. Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 5771–5777.

    Article  CAS  Google Scholar 

  42. Yu, Z. Y.; Lang, C. C.; Gao, M. R.; Chen, Y.; Fu, Q. Q.; Duan, Y.; Yu, S. H. Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 2018, 11, 1890–1897.

    Article  CAS  Google Scholar 

  43. Wang, Z. J.; Guo, P.; Cao, S. F.; Chen, H. Y.; Zhou, S. N.; Liu, H. H.; Wang, H. W.; Zhang, J. B.; Liu, S. Y.; Wei, S. X. et al. Contemporaneous inverse manipulation of the valence configuration to preferred Co2+ and Ni3+ for enhanced overall water electrocatalysis. Appl. Catal. B Environ. 2021, 284, 119725.

    Article  CAS  Google Scholar 

  44. Cheng, Y.; Guo, H. R.; Yuan, P. F.; Li, X. P.; Zheng, L. R.; Song, R. Self-supported bifunctional electrocatalysts with Ni nanoparticles encapsulated in vertical N-doped carbon nanotube for efficient overall water splitting. Chem. Eng. J. 2021, 413, 127531.

    Article  CAS  Google Scholar 

  45. Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

    Article  CAS  Google Scholar 

  46. Pan, U. N.; Paudel, D. R.; Kumar Das, A.; Singh, T. I.; Kim, N. H.; Lee, J. H. Ni-nanoclusters hybridized 1T-Mn-VTe2 mesoporous nanosheets for ultra-low potential water splitting. Appl. Catal. B Environ. 2022, 301, 120780.

    Article  CAS  Google Scholar 

  47. Liu, Y.; Zhang, J. H.; Li, Y. P.; Qian, Q. Z.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Manipulating dehydrogenation kinetics through dualdoping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 2020, 11, 1853.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51772162 and 52072197), the Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2019KJC004), the Major Scientific and Technological Innovation Project (No. 2019JZZY020405), the Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09), and the Taishan Scholar Young Talent Program (No. tsqn201909114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingqi Chi or Lei Wang.

Electronic Supplementary Material

12274_2022_4614_MOESM1_ESM.pdf

Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Yu, Q., Zhai, X. et al. Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater. Nano Res. 15, 8846–8856 (2022). https://doi.org/10.1007/s12274-022-4614-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4614-x

Keywords

Navigation