Skip to main content
Log in

Recent progress in MOFs-based nanozymes for biosensing

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanozymes are nanomaterials with enzyme-mimicking catalytic activity. Compared to natural enzymes, nanozymes show various properties such as easy to manufacture, stable, adjustable, and inexpensive. Nanozymes play key roles in biosensing, biocatalysis, and disease treatment. As an important kind of nanozymes, metal-organic framework (MOF)-based nanozymes are receiving a lot of attention due to their structural properties and composition. Rationally developing MOF with enzymes-like catalytic properties has opened new perspectives in biosensing. This review summarizes the up-to-date developments in synthesizing two-dimensional and three-dimensional MOF-based nanozymes and their applications in biosensing. Firstly, classification of nanozymes obtained by MOFs is categorized, and different properties of MOF-based nanozymes are described. Then, the distinctive applications of MOF-based nanozymes in identifying various analytes are thoroughly summarized. Finally, the recent challenges and progressive directions in this area are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y. N.; Zhang, J. W.; Zhao, Y.; Pu, M. J.; Song, X. Y.; Yu, L. M.; Yan, X. F.; Wu, J.; He, Z. Y. Innovations and challenges of polyphenol-based smart drug delivery systems. Nano Res. 2022, 15, 8156–8184.

    Article  CAS  Google Scholar 

  2. Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

    Article  CAS  Google Scholar 

  3. Das, A.; Pant, U.; Cao, C. N.; Moirangthem, R. S.; Kamble, H. B. Fabrication of plasmonic nanopyramidal array as flexible SERS substrate for biosensing application. Nano Res. 2023, 16, 1132–1140.

    Article  CAS  Google Scholar 

  4. Zhang, X.; Chen, J.; Hu, J. W.; du Rietz, A.; Wu, X. Y.; Zhang, R. L.; Zhang, Z. P.; Uvdal, K.; Hu, Z. J. Single-wavelength-excited fluorogenic nanoprobe for accurate realtime ratiometric analysis of broad pH fluctuations in mitophagy. Nano Res. 2022, 15, 6515–6521.

    Article  CAS  Google Scholar 

  5. Martynenko, I.; Litvin, A. P.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun’ko, Y. K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 2017, 5, 6701–6727.

    Article  CAS  Google Scholar 

  6. Chandio, I.; Janjhi, F. A.; Memon, A. A.; Memon, S.; Ali, Z.; Thebo, K. H.; Pirzado, A. A. A.; Hakro, A. A.; Khan, W. S. Ultrafast ionic and molecular sieving through graphene oxide based composite membranes. Desalination 2021, 500, 114848.

    Article  CAS  Google Scholar 

  7. Janjhi, F. A.; Chandio, I.; Memon, A. A.; Ahmed, Z.; Thebo, K. H.; Pirzado, A. A. A.; Hakro, A. A.; Iqbal, M. Functionalized graphene oxide based membranes for ultrafast molecular separation. Sep. Purif. Technol. 2021, 274, 117969.

    Article  Google Scholar 

  8. Lee, J.; Kim, J.; Kim, S.; Min, D. H. Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev. 2016, 105, 275–287.

    Article  CAS  Google Scholar 

  9. Yang, N.; Chen, X. P.; Ren, T. L.; Zhang, P.; Yang, D. G. Carbon nanotube based biosensors. Sens. Actuators B: Chem. 2015, 207, 690–715.

    Article  CAS  Google Scholar 

  10. Hu, W. T.; Wang, C. L.; Gao, D.; Liang, Q. L. Toxicity of transition metal nanoparticles: A review of different experimental models in the gastrointestinal tract. J. Appl. Toxicol. 2023, 43, 32–46.

    Article  CAS  Google Scholar 

  11. Korzeniowska, B.; Nooney, R.; Wencel, D.; McDonagh, C. Silica nanoparticles for cell imaging and intracellular sensing. Nanotechnology 2013, 24, 442002.

    Article  CAS  Google Scholar 

  12. Zheng, Y. B.; Ma, L. D.; Wu, J. L.; Wang, Y. M.; Meng, X. S.; Hu, P.; Liang, Q. L.; Xie, Y. Y.; Luo, G. A. Design and fabrication of an integrated 3D dynamic multicellular liver-on-a-chip and its application in hepatotoxicity screening. Talanta 2022, 241, 123262.

    Article  CAS  Google Scholar 

  13. Moreno-Bondi, M. C.; Benito-Peña, E.; Carrasco, S.; Urraca, J. Molecularly imprinted polymer-based optical chemosensors for selective chemical determinations. In Molecularly Imprinted Polymers for Analytical Chemistry Applications. Kutner, W.; Sharma, P. S., Eds.; Royal Society of Chemistry: London, 2018; pp 227–281.

    Chapter  Google Scholar 

  14. Khor, S. M.; Choi, J.; Won, P.; Ko, S. H. Challenges and strategies in developing an enzymatic wearable sweat glucose biosensor as a practical point-of-care monitoring tool for type II diabetes. Nanomaterials 2022, 12, 221.

    Article  CAS  Google Scholar 

  15. Villalonga, A.; Sánchez, A.; Mayol, B.; Reviejo, J.; Villalonga, R. Electrochemical biosensors for food bioprocess monitoring. Curr. Opin. Food Sci. 2022, 43, 18–26.

    Article  CAS  Google Scholar 

  16. Satish, L.; Baral, A. Functionalized nanomaterials for biosensing application. In Nanomaterials-Based Sensing Platforms. Samantara, A. K.; Raj, S.; Ratha, S., Eds.; Apple Academic Press: New York, 2022; pp 37–73.

    Google Scholar 

  17. Lu, S. Y.; Wu, H.; Hou, J. W.; Liu, L. M.; Li, J.; Harris, C. J.; Lao, C. Y.; Guo, Y. Z.; Xi, K.; Ding, S. J. et al. Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries. Nano Res. 2020, 13, 2289–2298.

    Article  CAS  Google Scholar 

  18. Javar, H. A.; Garkani-Nejad, Z.; Dehghannoudeh, G.; Mahmoudi-Moghaddam, H. Development of a new electrochemical DNA biosensor based on Eu3+ doped NiO for determination of amsacrine as an anti-cancer drug: Electrochemical, spectroscopic and docking studies. Anal. Chim. Acta 2020, 1133, 48–57.

    Article  Google Scholar 

  19. Gupta, R.; Raza, N.; Bhardwaj, S. K.; Vikrant, K.; Kim, K. H.; Bhardwaj, N. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J. Hazard. Mater. 2021, 401, 123379.

    Article  CAS  Google Scholar 

  20. Ai, Y. J.; Hu, Z. N.; Liang, X. P.; Sun, H. B.; Xin, H. B.; Liang, Q. L. Recent advances in nanozymes: From matters to bioapplications. Adv. Funct. Mater. 2022, 32, 2110432.

    Article  CAS  Google Scholar 

  21. He, M. Q.; Ai, Y. J.; Hu, W. T.; Guan, L. D.; Ding, M. Y.; Liang, Q. L. Recent advances of seed-mediated growth of metal nanoparticles: From growth to applications. Adv. Mater., in press, https://doi.org/10.1002/adma.202211915.

  22. Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819–8860.

    Article  CAS  Google Scholar 

  23. Nath, I.; Chakraborty, J.; Verpoort, F. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127–4170.

    Article  CAS  Google Scholar 

  24. Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.

    Article  CAS  Google Scholar 

  25. Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

    Article  Google Scholar 

  26. Liang, S.; Wu, X. L.; Xiong, J.; Zong, M. H.; Lou, W. Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213149.

    Article  CAS  Google Scholar 

  27. Ma, X. J.; Chai, Y. T.; Li, P.; Wang, B. Metal-organic framework films and their potential applications in environmental pollution control. Acc. Chem. Res. 2019, 52, 1461–1470.

    Article  CAS  Google Scholar 

  28. Dong, B.; Retoux, R.; De Waele, V.; Chiodo, S. G.; Mineva, T.; Cardin, J.; Mintova, S. Sodalite cages of EMT zeolite confined neutral molecular-like silver clusters. Microporous Mesoporous Mater. 2017, 244, 74–82.

    Article  CAS  Google Scholar 

  29. Wang, Y. D.; Zulpya, M.; Zhang, X. Y.; Xu, S. H.; Sun, J.; Dong, B. Recent advances of metal-organic frameworks-based nanozymes for bio-applications. Chem. Res. Chin. Univ. 2022, 38, 1324–1343.

    Article  CAS  Google Scholar 

  30. Li, B.; Wen, H. M.; Zhou, W.; Chen, B. L. Porous metal-organic frameworks for gas storage and separation: What, how, and why. J. Phys. Chem. Lett. 2014, 5, 3468–3479.

    Article  CAS  Google Scholar 

  31. Sun, X. L.; Wang, L.; Lynch, C. D.; Sun, X. K.; Li, X.; Qi, M. L.; Ma, C.; Li, C. Y.; Dong, B.; Zhou, Y. M. et al. Nanoparticles having amphiphilic silane containing chlorin e6 with strong anti-biofilm activity against periodontitis-related pathogens. J. Dent. 2019, 81, 70–84.

    Article  CAS  Google Scholar 

  32. Zhang, X. R.; Sun, J.; Liu, J. S.; Xu, H. W.; Dong, B.; Sun, X. K.; Zhang, T. X.; Xu, S. H.; Xu, L.; Bai, X. et al. Label-free electrochemical immunosensor based on conductive Ag contained EMT-style nano-zeolites and the application for α-fetoprotein detection. Sens. Actuators B: Chem. 2018, 255, 2919–2926.

    Article  CAS  Google Scholar 

  33. Wan, W.; Liang, Q. L.; Zhang, X. Q.; Yan, M.; Ding, M. Y. Magnetic metal-organic frameworks for selective enrichment and exclusion of proteins for MALDI-TOF MS analysis. Analyst 2016, 141, 4568–4572.

    Article  CAS  Google Scholar 

  34. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    Article  CAS  Google Scholar 

  35. Duan, J. G.; Li, Y. S.; Pan, Y. C.; Behera, N.; Jin, W. Q. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord. Chem. Rev. 2019, 395, 25–45.

    Article  CAS  Google Scholar 

  36. Yi, K. Y.; Zhang, X. T.; Zhang, L. Eu3+@metal-organic frameworks encapsulating carbon dots as ratiometric fluorescent probes for rapid recognition of anthrax spore biomarker. Sci. Total Environ. 2020, 743, 140692.

    Article  CAS  Google Scholar 

  37. Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Mahy, J. P.; Steunou, N.; Serre, C. Metal-organic frameworks: A novel host platform for enzymatic catalysis and detection. Mater. Horiz. 2017, 4, 55–63.

    Article  CAS  Google Scholar 

  38. Huang, X.; Zhang, S. T.; Tang, Y. J.; Zhang, X. Y.; Bai, Y.; Pang, H. Advances in metal-organic framework-based nanozymes and their applications. Coord. Chem. Rev. 2021, 449, 214216.

    Article  CAS  Google Scholar 

  39. Li, S. Q.; Liu, X. D.; Chai, H. X.; Huang, Y. M. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trend. Anal. Chem. 2018, 105, 391–403.

    Article  CAS  Google Scholar 

  40. Ding, K. L.; Hu, Z. N.; Zhang, W. H.; Liang, J. X.; Wang, Y. M.; Li, H.; Sun, Z. J.; Liang, Q. L.; Sun, H. B. Bimetallic RhIn/ZIF-8 for the catalyic chemoselective hydrogenation of nitrostyrene: Exploration of natural selectivity of hydrogen sources and enhancing intrinsic selectivity. Microporous Mesoporous Mater. 2022, 332, 111693.

    Article  CAS  Google Scholar 

  41. Li, J. F.; Liu, L.; Ai, Y. J.; Liu, Y.; Sun, H. B.; Liang, Q. L. Self-polymerized dopamine-decorated Au NPs and coordinated with Fe-MOF as a dual binding sites and dual signal-amplifying electrochemical aptasensor for the detection of CEA. ACS Appl. Mater. Interfaces 2020, 12, 5500–5510.

    Article  CAS  Google Scholar 

  42. Wang, L. J.; Hu, Z.; Wu, S. W.; Pan, J. M.; Xu, X. C.; Niu, X. H. A peroxidase-mimicking Zr-based MOF colorimetric sensing array to quantify and discriminate phosphorylated proteins. Anal. Chim. Acta 2020, 1121, 26–34.

    Article  CAS  Google Scholar 

  43. Lin, T. R.; Qin, Y. M.; Huang, Y. L.; Yang, R. T.; Hou, L.; Ye, F. G.; Zhao, S. L. A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chem. Commun. 2011, 54, 1762–1765.

    Article  Google Scholar 

  44. Niu, X. H.; Li, X.; Lyu, Z. Y.; Pan, J. M.; Ding, S. C.; Ruan, X. F.; Zhu, W. L.; Du, D.; Lin, Y. H. Metal-organic framework based nanozymes: Promising materials for biochemical analysis. Chem. Commun. 2020, 56, 11338–11353.

    Article  CAS  Google Scholar 

  45. Ling, P. H.; Lei, J. P.; Zhang, L.; Ju, H. X. Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal. Chem. 2015, 87, 3957–3963.

    Article  CAS  Google Scholar 

  46. Cui, L.; Wu, J.; Li, J.; Ju, H. X. Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal-organic framework. Anal. Chem. 2015, 87, 10635–10641.

    Article  CAS  Google Scholar 

  47. Cheng, H. J.; Liu, Y. F.; Hu, Y. H.; Ding, Y. B.; Lin, S. C.; Cao, W.; Wang, Q.; Wu, J. J. X.; Muhammad, F.; Zhao, X. Z. et al. Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal. Chem. 2017, 89, 11552–11559.

    Article  CAS  Google Scholar 

  48. Ruan, X. F.; Liu, D.; Niu, X. H.; Wang, Y. J.; Simpson, C. D.; Cheng, N.; Du, D.; Lin, Y. H. 2D graphene oxide/Fe-MOF nanozyme nest with superior peroxidase-like activity and its application for detection of woodsmoke exposure biomarker. Anal. Chem. 2019, 91, 13847–13854.

    Article  CAS  Google Scholar 

  49. Ai, L. H.; Li, L. L.; Zhang, C. H.; Fu, J.; Jiang, J. MIL-53(Fe): A metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem.—Eur. J. 2013, 19, 15105–15108.

    Article  CAS  Google Scholar 

  50. Liu, Y. L.; Zhao, X. J.; Yang, X. X.; Li, Y. F. A nano-sized metal-organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 2013, 138, 4526–4531.

    Article  CAS  Google Scholar 

  51. Zhang, J. W.; Zhang, H. T.; Du, Z. Y.; Wang, X. Q.; Yu, S. H.; Jiang, H. L. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem. Commun. 2014, 50, 1092–1094.

    Article  CAS  Google Scholar 

  52. Sun, Z. J.; Jiang, Z. W.; Li, Y. F. Poly(dopamine) assisted in situ fabrication of silver nanoparticles/metal-organic framework hybrids as SERS substrates for folic acid detection. RSC Adv. 2016, 6, 79805–79810.

    Article  CAS  Google Scholar 

  53. Li, Y.; Li, Y. N.; Zheng, J. W.; Dong, X. Y.; Guo, R. X.; Wang, Y. M.; Hu, Z. N.; Ai, Y. J.; Liang, Q. L.; Sun, H. B. Metal-organic framework-encapsulated CoCu nanoparticles for the selective transfer hydrogenation of nitrobenzaldehydes: Engineering active armor by the half-way injection method. Chem.—Eur. J. 2021, 27, 1080–1087.

    Article  CAS  Google Scholar 

  54. Lu, J. Y.; Xiong, Y. H.; Liao, C. J.; Ye, F. G. Colorimetric detection of uric acid in human urine and serum based on peroxidase mimetic activity of MIL-53(Fe). Anal. Methods 2015, 7, 9894–9899.

    Article  CAS  Google Scholar 

  55. Ye, K.; Wang, L. J.; Song, H. W.; Li, X.; Niu, X. H. Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for alkaline phosphatase detection. J. Mater. Chem. B 2019, 7, 4794–4800.

    Article  CAS  Google Scholar 

  56. Shi, Q. R.; Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. H. Metal-organic frameworks-based catalysts for electrochemical oxygen evolution. Mater. Horiz. 2019, 6, 684–702.

    Article  CAS  Google Scholar 

  57. Li, J.; Zhao, J.; Li, S. Q.; Chen, Y.; Lv, W. Q.; Zhang, J. H.; Zhang, L. B.; Zhang, Z.; Lu, X. Q. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021, 14, 4689–4695.

    Article  CAS  Google Scholar 

  58. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  CAS  Google Scholar 

  59. Ai, Y. J.; He, M. Q.; Sun, H.; Jia, X. M.; Wu, L.; Zhang, X. Y.; Sun, H. B.; Liang, Q. L. Ultra-small high-entropy alloy nanoparticles: Efficient nanozyme for enhancing tumor photothermal therapy. Adv. Mater. 2023, 35, 2302335.

    Article  CAS  Google Scholar 

  60. He, Y. F.; Li, X.; Xu, X. C.; Pan, J. M.; Niu, X. H. A cobalt-based polyoxometalate nanozyme with high peroxidase-mimicking activity at neutral pH for one-pot colorimetric analysis of glucose. J. Mater. Chem. B 2011, 6, 5750–5755.

    Article  Google Scholar 

  61. Zhang, X. Q.; Liang, Q. L.; Han, Q.; Wan, W.; Ding, M. Y. Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins. Analyst 2016, 141, 4219–4226.

    Article  CAS  Google Scholar 

  62. Liu, H. Q.; Rong, J. N.; Shen, G. Q.; Song, Y.; Gu, W.; Liu, X. A fluorescent probe for sequential sensing of MnO4 and Cr2O72− ions in aqueous medium based on a UCNS/TMB nanosystem. Dalton Trans. 2019, 48, 4168–4175.

    Article  CAS  Google Scholar 

  63. Sloan-Dennison, S.; Laing, S.; Shand, N. C.; Graham, D.; Faulds, K. A novel nanozyme assay utilising the catalytic activity of silver nanoparticles and SERRS. Analyst 2017, 142, 2484–2490.

    Article  CAS  Google Scholar 

  64. Wu, A. Q.; Wang, W. Q.; Zhan, H. B.; Cao, L. A.; Ye, X. L.; Zheng, J. J.; Kumar, P. N.; Chiranjeevulu, K.; Deng, W. H.; Wang, G. E. et al. Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Res. 2021, 14, 438–443.

    Article  CAS  Google Scholar 

  65. Niu, X. H.; Xu, X. C.; Li, X.; Pan, J. M.; Qiu, F. X.; Zhao, H. L.; Lan, M. B. Surface charge engineering of nanosized CuS via acidic amino acid modification enables high peroxidase-mimicking activity at neutral pH for one-pot detection of glucose. Chem. Commun. 2018, 54, 13443–13446.

    Article  CAS  Google Scholar 

  66. He, L.; Li, Y.; Wu, Q.; Wang, D. M.; Li, C. M.; Huang, C. Z.; Li, Y. F. Ru(III)-based metal-organic gels: Intrinsic horseradish and NADH peroxidase-mimicking nanozyme. ACS Appl. Mater. Interfaces 2019, 11, 29158–29166.

    Article  CAS  Google Scholar 

  67. Liu, Y. F.; Zhou, M.; Cao, W.; Wang, X. Y.; Wang, Q.; Li, S. R.; Wei, H. Light-responsive metal-organic framework as an oxidase mimic for cellular glutathione detection. Anal. Chem. 2019, 91, 8170–8175.

    Article  CAS  Google Scholar 

  68. Liu, Y. F.; Wang, X. Y.; Wei, H. Light-responsive nanozymes for biosensing. Analyst 2020, 145, 4388–4397.

    Article  CAS  Google Scholar 

  69. Wang, J. H.; Song, B.; Tang, J. L.; Hu, G. Y.; Wang, J. Y.; Cui, M. Y.; He, Y. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 2020, 13, 1614–1619.

    Article  CAS  Google Scholar 

  70. Wang, Y.; Liang, R. P.; Qiu, J. D. Nanoceria-templated metal-organic frameworks with oxidase-mimicking activity boosted by hexavalent chromium. Anal. Chem. 2020, 92, 2339–2346.

    Article  CAS  Google Scholar 

  71. Zhang, X. H.; Liu, W.; Li, X. M.; Zhang, Z.; Shan, D. L.; Xia, H.; Zhang, S. T.; Lu, X. Q. Ultrahigh selective colorimetric quantification of chromium(VI) ions based on gold amalgam catalyst oxidoreductase-like activity in water. Anal. Chem. 2011, 90, 14309–14315.

    Article  Google Scholar 

  72. Ai, Y. J.; Sun, H.; Gao, Z. X.; Wang, C. L.; Guan, L. D.; Wang, Y.; Wang, Y. P.; Zhang, H. Y.; Liang, Q. L. Dual enzyme mimics based on metal-ligand cross-linking strategy for accelerating ascorbate oxidation and enhancing tumor therapy. Adv. Funct. Mater. 2021, 31, 2103581.

    Article  CAS  Google Scholar 

  73. Liang, H.; Lin, F. F.; Zhang, Z. J.; Liu, B. W.; Jiang, S. H.; Yuan, Q. P.; Liu, J. W. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352–1360.

    Article  CAS  Google Scholar 

  74. Wang, J. H.; Huang, R. L.; Qi, W.; Su, R. X.; Binks, B. P.; He, Z. M. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B: Environ. 2019, 254, 452–462.

    Article  CAS  Google Scholar 

  75. Zhang, L.; Zhang, Y.; Wang, Z. Z.; Cao, F. F.; Sang, Y. J.; Dong, K.; Pu, F.; Ren, J. S.; Qu, X. G. Constructing metal-organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater. Horiz. 2019, 6, 1682–1687.

    Article  CAS  Google Scholar 

  76. Mondloch, J. E.; Katz, M. J.; Isley Iii, W. C.; Ghosh, P.; Liao, P. L.; Bury, W.; Wagner, G. W.; Hall, M. G.; DeCoste, J. B.; Peterson, G. W. et al. Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater. 2015, 14, 512–516.

    Article  CAS  Google Scholar 

  77. López-Maya, E.; Montoro, C.; Rodríguez-Albelo, L. M.; Aznar Cervantes, S. D.; Lozano-Pérez, A. A.; Cenís, J. L.; Barea, E.; Navarro, J. A. R. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents. Angew. Chem., Int. Ed. 2015, 54, 6790–6794.

    Article  Google Scholar 

  78. Moon, S. Y.; Wagner, G. W.; Mondloch, J. E.; Peterson, G. W.; DeCoste, J. B.; Hupp, J. T.; Farha, O. K. Effective, facile, and selective hydrolysis of the chemical warfare agent VX using Zr6-based metal-organic frameworks. Inorg. Chem. 2015, 54, 10829–10833.

    Article  CAS  Google Scholar 

  79. Li, P.; Klet, R. C.; Moon, S. Y.; Wang, T. C.; Deria, P.; Peters, A. W.; Klahr, B. M.; Park, H. J.; Al-Juaid, S. S.; Hupp, J. T. et al. Synthesis of nanocrystals of Zr-based metal-organic frameworks with csq-net: Significant enhancement in the degradation of a nerve agent simulant. Chem. Commun. 2015, 51, 10925–10928.

    Article  CAS  Google Scholar 

  80. Chen, H. Y.; Liao, P. L.; Mendonca, M. L.; Snurr, R. Q. Insights into catalytic hydrolysis of organophosphate warfare agents by metal-organic framework NU-1000. J. Phys. Chem. C 2011, 122, 12362–12368.

    Article  Google Scholar 

  81. Park, H. J.; Jang, J. K.; Kim, S. Y.; Ha, J. W.; Moon, D.; Kang, I. N.; Bae, Y. S.; Kim, S.; Hwang, D. H. Synthesis of a Zr-based metal-organic framework with spirobifluorenetetrabenzoic acid for the effective removal of nerve agent simulants. Inorg. Chem. 2017, 56, 12098–12101.

    Article  CAS  Google Scholar 

  82. Ai, Y. J.; You, J. Z.; Gao, J. Y.; Wang, J. P.; Sun, H. B.; Ding, M. Y.; Liang, Q. L. Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation. Nano Res. 2021, 14, 2644–2653.

    Article  CAS  Google Scholar 

  83. Kim, S.; Jee, S.; Choi, K. M.; Shin, D. S. Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki–Miyaura cross coupling reactions in aqueous media. Nano Res. 2021, 14, 486–492.

    Article  CAS  Google Scholar 

  84. Li, L. L.; Li, B.; Chen, D. M.; Zhao, J. C.; Yang, D. Q.; Ma, D. H.; Jiang, L.; Yang, Y. P.; Li, Y. Z.; Wang, J. Q. MOFzyme: FJU-21 with intrinsic high protease-like activity for hydrolysis of proteins. J. Biosci. Med. 2019, 7, 222–230.

    CAS  Google Scholar 

  85. Chen, J. X.; Huang, L.; Wang, Q. Q.; Wu, W. W.; Zhang, H.; Fang, Y. X.; Dong, S. J. Bio-inspired nanozyme: A hydratase mimic in a zeolitic imidazolate framework. Nanoscale 2019, 11, 5960–5966.

    Article  CAS  Google Scholar 

  86. Meng, Z. H.; Chen, N.; Cai, S. C.; Wu, J. W.; Wang, R.; Tian, T.; Tang, H. L. Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2021, 14, 4768–4775.

    Article  CAS  Google Scholar 

  87. Luo, L. P.; Huang, L. J.; Liu, X. N.; Zhang, W. T.; Yao, X. L.; Dou, L. N.; Zhang, X.; Nian, Y.; Sun, J.; Wang, J. L. Mixed-valence Ce-BPyDC metal-organic framework with dual enzyme-like activities for colorimetric biosensing. Inorg. Chem. 2019, 58, 11382–11388.

    Article  CAS  Google Scholar 

  88. Li, X.; Zhou, H.; Qi, F.; Niu, X. H.; Xu, X. C.; Qiu, F. X.; He, Y. F.; Pan, J. M.; Ni, L. Three hidden talents in one framework: A terephthalic acid-coordinated cupric metal-organic framework with cascade cysteine oxidase- and peroxidase-mimicking activities and stimulus-responsive fluorescence for cysteine sensing. J. Mater. Chem. B 2018, 6, 6207–6211.

    Article  CAS  Google Scholar 

  89. Liu, K.; Zhang, M. X.; Du, X. X.; Zhou, A. Q.; Hui, B.; Xia, Y. Z.; Zhang, K. W. Zinc-catecholete frameworks biomimetically grown on marine polysaccharide microfibers for soft electronic platform. Nano Res. 2022, 16, 1296–1303.

    Article  Google Scholar 

  90. Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Cover picture: Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts (Angew. Chem. Int. Ed. 41/2012). Angew. Chem., Int. Ed. 2012, 51, 10197.

    Article  Google Scholar 

  91. Yu, G. X.; Song, X.; Zheng, S. J.; Zhao, Q.; Yan, D. T.; Zhao, J. S. A facile and sensitive tetrabromobisphenol-A sensor based on biomimetic catalysis of a metal-organic framework: PCN-222(Fe). Anal. Methods 2018, 10, 4275–4281.

    Article  CAS  Google Scholar 

  92. Aghayan, M.; Mahmoudi, A.; Nazari, K.; Dehghanpour, S.; Sohrabi, S.; Sazegar, M. R.; Mohammadian-Tabrizi, N. Fe(III) porphyrin metal-organic framework as an artificial enzyme mimics and its application in biosensing of glucose and H2O2. J. Porous Mater. 2019, 26, 1507–1521.

    Article  CAS  Google Scholar 

  93. Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

    Article  CAS  Google Scholar 

  94. Wang, Y.; Zhu, Y. J.; Binyam, A.; Liu, M. S.; Wu, Y. N.; Li, F. T. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens. Bioelectron. 2016, 86, 432–438.

    Article  CAS  Google Scholar 

  95. Yuan, H. Y.; Zvonkina, I. J.; Al-Enizi, A. M.; Elzatahry, A. A.; Pyun, J.; Karim, A. Facile assembly of aligned magnetic nanoparticle chains in polymer nanocomposite films by magnetic flow coating. ACS Appl. Mater. Interfaces 2017, 9, 11290–11298.

    Article  CAS  Google Scholar 

  96. Wang, C. H.; Gao, J.; Cao, Y. L.; Tan, H. L. Colorimetric logic gate for alkaline phosphatase based on copper(II)-based metal-organic frameworks with peroxidase-like activity. Anal. Chim. Acta 2018, 1004, 74–81.

    Article  CAS  Google Scholar 

  97. Liu, J.; Yuan, Y.; Cheng, Y. N.; Fu, D. A.; Chen, Z. Y.; Wang, Y.; Zhang, L. F.; Yao, C. D.; Shi, L.; Li, M. Y. et al. Copper-based metal-organic framework overcomes cancer chemoresistance through systemically disrupting dynamically balanced cellular redox homeostasis. J. Am. Chem. Soc. 2022, 144, 4799–4809.

    Article  CAS  Google Scholar 

  98. Junk, P.; Humphrey, M.; Koutsantonis, G. Editorial. Coord. Chem. Rev. 2018, 375, 1.

    Article  CAS  Google Scholar 

  99. Wang, C.; Liu, X. M.; Zhang, M.; Geng, Y.; Zhao, L.; Li, Y. G.; Su, Z. M. Two-dimensional cobaltporphyrin-based cobalt-organic framework as an efficient photocatalyst for CO2 reduction reaction: A computational study. ACS Sustainable Chem. Eng. 2019, 7, 14102–14110.

    Article  CAS  Google Scholar 

  100. Xie, Y. L.; Wang, M.; Sun, Q. Q.; Wang, D. M.; Li, C. X. Recent advances in tetrakis (4-carboxyphenyl) porphyrin-based nanocomposites for tumor therapy. Adv. Nanobiomed Res. 2022, 3, 2200136.

    Article  Google Scholar 

  101. Liang, Y. H.; Shang, R.; Lu, J. R.; Liu, L.; Hu, J. S.; Cui, W. Q. Ag3PO4@UMOFNs core-shell structure: Two-dimensional MOFs promoted photoinduced charge separation and photocatalysis. ACS Appl. Mater. Interfaces 2018, 10, 8758–8769.

    Article  CAS  Google Scholar 

  102. Tan, S. Y.; Long, Y.; Han, Q.; Guan, H. Y.; Liang, Q. L.; Ding, M. Y. Designed fabrication of polymer-mediated MOF-derived magnetic hollow carbon nanocages for specific isolation of bovine hemoglobin. ACS Biomater. Sci. Eng. 2020, 6, 1387–1396.

    Article  CAS  Google Scholar 

  103. Hu, M. Q.; Lou, H.; Yan, X. L.; Hu, X. Y.; Feng, R.; Zhou, M. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue. Microporous Mesoporous Mater. 2018, 271, 68–72.

    Article  CAS  Google Scholar 

  104. Khoobi, A.; Salavati-Niasari, M.; Ghani, M.; Ghoreishi, S. M.; Gholami, A. Multivariate optimization methods for in-situ growth of LDH/ZIF-8 nanocrystals on anodized aluminium substrate as a nano sorbent for stir bar sorptive extraction in biological and food samples. Food Chem. 2019, 288, 39–46.

    Article  CAS  Google Scholar 

  105. Wang, B.; Zhang, X.; Huang, H. L.; Zhang, Z. J.; Yildirim, T.; Zhou, W.; Xiang, S. C.; Chen, B. L. A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res. 2021, 14, 507–511.

    Article  CAS  Google Scholar 

  106. Jin, H. H.; Zhou, H.; Ji, P. X.; Zhang, C. T.; Luo, J. H.; Zeng, W. H.; Hu, C. X.; He, D. P.; Mu, S. C. ZIF-8/LiFePO4 derived Fe-NP Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res. 2020, 13, 818–823.

    Article  CAS  Google Scholar 

  107. Hu, S. S.; Yan, J. J.; Huang, X. M.; Guo, L. H.; Lin, Z. Y.; Luo, F.; Qiu, B.; Wong, K. Y.; Chen, G. N. A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sens. Actuators B: Chem. 2018, 267, 312–319.

    Article  CAS  Google Scholar 

  108. Shi, M. Y.; Xu, M.; Gu, Z. Y. Copper-based two-dimensional metal-organic framework nanosheets as horseradish peroxidase mimics for glucose fluorescence sensing. Anal. Chim. Acta 2019, 1079, 164–170.

    Article  CAS  Google Scholar 

  109. Chen, H. Y.; Qiu, Q. M.; Sharif, S.; Ying, S. N.; Wang, Y. X.; Ying, Y. B. Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Appl. Mater. Interfaces 2018, 10, 24108–24115.

    Article  CAS  Google Scholar 

  110. Chen, J. Y.; Shu, Y.; Li, H. L.; Xu, Q.; Hu, X. Y. Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta 2018, 189, 254–261.

    Article  CAS  Google Scholar 

  111. Qin, L.; Wang, X. Y.; Liu, Y. F.; Wei, H. 2D-metal-organic-framework-nanozyme sensor arrays for probing phosphates and their enzymatic hydrolysis. Anal. Chem. 2018, 90, 9983–9989.

    Article  CAS  Google Scholar 

  112. Wang, X. Y.; Jiang, X. Q.; Wei, H. Phosphate-responsive 2D-metal-organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. J. Mater. Chem. B 2020, 8, 6905–6911.

    Article  CAS  Google Scholar 

  113. Chen, J. Y.; Xu, Q.; Shu, Y.; Hu, X. Y. Synthesis of a novel Au nanoparticle decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytics performance for the detection of glucose in human serum. Talanta 2018, 184, 136–142.

    Article  CAS  Google Scholar 

  114. Yan, R.; Zhao, Y.; Yang, H.; Kang, X. J.; Wang, C.; Wen, L. L.; Lu, Z. D. Ultrasmall Au nanoparticles embedded in 2D mixed-ligand metal-organic framework nanosheets exhibiting highly efficient and size-selective catalysis. Adv. Funct. Mater. 2018, 28, 1802021.

    Article  Google Scholar 

  115. Tan, B.; Zhao, H. M.; Wu, W. H.; Liu, X.; Zhang, Y. B.; Quan, X. Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale 2017, 9, 18699–18710.

    Article  CAS  Google Scholar 

  116. Tao, Y.; Chang, Q.; Liu, Q. H.; Guan, H. T.; Yang, G. L.; Lang, R. F.; Chen, G.; Dong, C. J. In situ fabrication of Ni(OH)2 nanoflakes/K-Ti-O nanowires on NiTi foil for high performance non-enzymatic hydrogen peroxide sensing. J. Electroanal. Chem. 2019, 842, 107–114.

    Article  CAS  Google Scholar 

  117. Zhai, M. K.; Wang, F.; Du, H. B. Transition-metal phosphide-carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic watersplitting. ACS Appl. Mater. Interfaces 2017, 9, 40171–40179.

    Article  CAS  Google Scholar 

  118. Zhang, X. L.; Zhang, F.; Lu, Z.; Xu, Q.; Hou, C. T.; Wang, Z. H. Coupling two sequential biocatalysts with close proximity into metal-organic frameworks for enhanced cascade catalysis. ACS Appl. Mater. Interfaces 2020, 12, 25565–25571.

    Article  CAS  Google Scholar 

  119. Zhou, B. S.; Sun, X. L.; Dong, B.; Yu, S. Y.; Cheng, L.; Hu, S. T.; Liu, W.; Xu, L.; Bai, X.; Wang, L. et al. Antibacterial PDT nano platform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections. Theranostics 2022, 12, 2580–2597.

    Article  CAS  Google Scholar 

  120. Fang, J.; Wan, Y.; Sun, Y.; Sun, X. L.; Qi, M. L.; Cheng, S.; Li, C. Y.; Zhou, Y. M.; Xu, L.; Dong, B. et al. Near-infrared-activated nanohybrid coating with black phosphorus/zinc oxide for efficient biofilm eradication against implant-associated infections. Chem. Eng. J. 2022, 435, 134935.

    Article  CAS  Google Scholar 

  121. Zhang, X. R.; Dong, B.; Liu, W.; Zhou, X. Y.; Liu, M.; Sun, X. K.; Lv, J. K.; Zhang, L. L.; Xu, W.; Bai, X. et al. Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance. Sens. Actuators B: Chem. 2020, 320, 128405.

    Article  CAS  Google Scholar 

  122. Tan, D. X.; Zhang, J. L.; Yao, L.; Tan, X. N.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zheng, L. R.; Zhang, J. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Res. 2020, 13, 768–774.

    Article  CAS  Google Scholar 

  123. Li, Y. Z.; Li, T. T.; Chen, W.; Song, Y. Y. Co4N nanowires: Noble-metal-free peroxidase mimetic with excellent salt- and temperature-resistant abilities. ACS Appl. Mater. Interfaces 2017, 9, 29881–29888.

    Article  CAS  Google Scholar 

  124. Jiang, Z. W.; Gao, P. F.; Yang, L.; Huang, C. Z.; Li, Y. F. Facile in situ synthesis of silver nanoparticles on the surface of metal-organic framework for ultrasensitive surface-enhanced Raman scattering detection of dopamine. Anal. Chem. 2015, 87, 12177–12182.

    Article  CAS  Google Scholar 

  125. Shen, W. J.; Zhuo, Y.; Chai, Y. Q.; Yuan, R. Ce-based metal-organic frameworks and DNAzyme-assisted recycling as dual signal amplifiers for sensitive electrochemical detection of lipopolysaccharide. Biosens. Bioelectron. 2016, 83, 287–292.

    Article  CAS  Google Scholar 

  126. Wang, S. M.; Hwang, J.; Kim, E. Polyoxometalates as promising materials for electrochromic devices. J. Mater. Chem. C 2019, 7, 7828–7850.

    Article  CAS  Google Scholar 

  127. Yang, Y.; Yang, Z. H.; Lv, J. J.; Yuan, R.; Chai, Y. Q. Thrombin aptasensor enabled by Pt nanoparticles-functionalized Co-based metal organic frameworks assisted electrochemical signal amplification. Talanta 2017, 169, 44–49.

    Article  CAS  Google Scholar 

  128. Li, H. P.; Liu, H. F.; Zhang, J. D.; Cheng, Y. X.; Zhang, C. L.; Fei, X. Y.; Xian, Y. Z. Platinum nanoparticle encapsulated metal-organic frameworks for colorimetric measurement and facile removal of mercury(II). ACS Appl. Mater. Interfaces 2017, 9, 40716–40725.

    Article  CAS  Google Scholar 

  129. Zhang, Y. M.; Song, J.; Pan, Q. L.; Zhang, X.; Shao, W. H.; Zhang, X.; Quan, C. S.; Li, J. An Au@NH2-MIL-125(Ti)-based multifunctional platform for colorimetric detections of biomolecules and Hg2+. J. Mater. Chem. B 2020, 8, 114–124.

    Article  CAS  Google Scholar 

  130. Wang, X. L.; Wang, H.; Guo, L.; Chen, G.; Kong, R. M.; Qu, F. L.; Xia, L. Colorimetric detection of Hg(II) based on the gold amalgam-triggered reductase mimetic activity in aqueous solution by employing AuNP@MOF nanoparticles. Analyst 2020, 145, 1362–1367.

    Article  Google Scholar 

  131. Chong, G. W.; Zang, J.; Han, Y.; Su, R. P.; Weeranoppanant, N.; Dong, H. Q.; Li, Y. Y. Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Res. 2021, 14, 1244–1259.

    Article  CAS  Google Scholar 

  132. Chen, X. H.; Zhao, L. F.; Wu, K. Q.; Yang, H.; Zhou, Q.; Xu, Y.; Zheng, Y. J.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Bound oxygen-atom transfer endows peroxidase-mimic M-N-C with high substrate selectivity. Chem. Sci. 2021, 12, 8865–8871.

    Article  CAS  Google Scholar 

  133. Yang, L.; Wang, Z.; Gong, H. J.; Gai, S. L.; Shen, R. F. Tirapazamine-loaded UiO-66/Cu for ultrasound-mediated promotion of chemodynamic therapy cascade hypoxia-activated anticancer therapy. J. Colloid Interface Sci. 2022, 634, 495–508.

    Article  Google Scholar 

  134. Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

    Article  CAS  Google Scholar 

  135. Zhao, W. J.; Yu, C. Y.; Zhao, J.; Chen, F. Q.; Guan, X. Y.; Li, H.; Tang, B.; Yu, G. T.; Valtchev, V.; Yan, Y. S. et al. 3D hydrazone-functionalized covalent organic frameworks as pH-triggered rotary switches. Small 2021, 7, 2102630.

    Article  Google Scholar 

  136. Sun, Y.; Sun, X. L.; Li, X.; Li, W.; Li, C. Y.; Zhou, Y. M.; Wang, L.; Dong, B. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials 2021, 268, 120614.

    Article  CAS  Google Scholar 

  137. Sun, L. H.; Liu, J. S.; Xu, S. H.; Dong, B.; Lv, J. K.; Hu, S. T.; Zhou, B. S.; Shen, B.; Wang, Y. Q.; Xu, L. et al. High fluorescence LaOBr/coumarin organic-inorganic composite nanomaterials for ultra-sensitive Fe3+ sensing, fluorescence imaging, and water-based ink anti-counterfeiting applications. J. Mater. Chem. C 2020, 8, 13733–13742.

    Article  CAS  Google Scholar 

  138. Liu, J. S.; Guo, Y.; Dong, B.; Sun, J.; Lyu, J.; Sun, L. H.; Hu, S. T.; Xu, L.; Bai, X.; Xu, W. et al. Water-soluble coumarin oligomer based ultra-sensitive iron ion probe and applications. Sens. Actuators B: Chem. 2020, 320, 128361.

    Article  CAS  Google Scholar 

  139. Li, X.; Qi, M. L.; Sun, X. L.; Weir, M. D.; Tay, F. R.; Oates, T. W.; Dong, B.; Zhou, Y. M.; Wang, L.; Xu, H. H. K. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 2019, 94, 627–643.

    Article  CAS  Google Scholar 

  140. Xu, H. W.; Dong, B.; Xu, S. H.; Xu, S.; Sun, X. K.; Sun, J.; Yang, Y. D.; Xu, L.; Bai, X.; Zhang, S. et al. High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites. Biomaterials 2017, 138, 69–79.

    Article  CAS  Google Scholar 

  141. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotech. 2007, 2, 577–583.

    Article  CAS  Google Scholar 

  142. Zhang, L. H.; Dong, B.; Xu, L.; Zhang, X. R.; Chen, J. J.; Sun, X. K.; Xu, H. W.; Zhang, T. X.; Bai, X.; Zhang, S. et al. Three-dimensional ordered ZnO-Fe3O4 inverse opal gas sensor toward trace concentration acetone detection. Sens. Actuators B: Chem. 2017, 252, 367–374.

    Article  CAS  Google Scholar 

  143. Zhang, L. P.; Montesdeoca, N.; Karges, J.; Xiao, H. H. Immunogenic cell death inducing metal complexes for cancer therapy. Angew. Chem., Int. Ed., 2022, 62, e2023006.

    Google Scholar 

  144. Liu, Q. W.; Zhang, A. M.; Wang, R. H.; Zhang, Q.; Cui, D. X. A review on metal- and metal oxide-based nanozymes: Properties, mechanisms, and applications. Nanomicro Lett. 2021, 13, 1–53.

    Google Scholar 

  145. Tang, X. Q.; Zhang, Y. D.; Jiang, Z. W.; Wang, D. M.; Huang, C. Z.; Li, Y. F. Fe3O4 and metal-organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose. Talanta 2018, 179, 43–50.

    Article  Google Scholar 

  146. Zhang, Y. S.; Hu, Y. F.; Li, G. K.; Zhang, R. K. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy. Microchim. Acta 2019, 186, 477.

    Article  Google Scholar 

  147. Cui, Y. X.; Rimoldi, M.; Platero-Prats, A. E.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. Stabilizing a vanadium oxide catalyst by supporting on a metal-organic framework. ChemCatChem 2018, 10, 1772–1777.

    Article  CAS  Google Scholar 

  148. Yin, S. Y.; Song, G. S.; Yang, Y.; Zhao, Y.; Wang, P.; Zhu, L. M.; Yin, X.; Zhang, X. B. Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@metal-organic frameworks for enhanced photodynamic therapy. Adv. Funct. Mater. 2019, 29, 1901417.

    Article  Google Scholar 

  149. Liu, J. T.; Ye, L. Y.; Xiong, W. H.; Liu, T. R.; Yang, H.; Lei, J. P. A cerium oxide@metal-organic framework nanoenzyme as a tandem catalyst for enhanced photodynamic therapy. Chem. Commun. 2021, 57, 2820–2823.

    Article  CAS  Google Scholar 

  150. Zhang, L. P.; Wang, Y. Q.; Karges, J.; Tang, D. S.; Zhang, H. C.; Zou, K. X.; Song, J.; Xiao, H. H. Tetrahedral DNA nanostructure with interferon stimulatory DNA delivers highly potent toxins and activates the cGAS-STING pathway for robust chemotherapy and immunotherapy. Adv. Mater. 2022, 35, 2210267.

    Article  Google Scholar 

  151. Ahn, D. H.; Jeong, J. H.; Song, J.; Lee, J. Y.; Kwon, J. H. Highly efficient deep blue fluorescent organic light-emitting diodes boosted by thermally activated delayed fluorescence sensitization. ACS Appl. Mater. Interfaces 2018, 10, 10246–10253.

    Article  CAS  Google Scholar 

  152. Liu, J. T.; Córdova Wong, B. J.; Liu, T. R.; Yang, H.; Yao Ye, L.; Lei, J. P. Glutathione-responsive heterogeneous metal-organic framework hybrids for photodynamic-gene synergetic cell apoptosis. Chem.—Eur. J. 2022, 28, e202200305.

    Article  CAS  Google Scholar 

  153. Lu, J.; Hu, Y. H.; Wang, P. X.; Liu, P. Q.; Chen, Z. G.; Sun, D. P. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sens. Actuators B: Chem. 2020, 311, 127909.

    Article  CAS  Google Scholar 

  154. Zheng, Y. H.; Rong, J.; Xu, J. C.; Zhu, Y.; Zhang, T.; Yang, D. Y.; Qiu, F. X. Accessible active sites activated by cobalt-doping into MoS2/NiS2 nanosheet array electrocatalyst for enhanced hydrogen evolution reaction. Appl. Surf. Sci. 2021, 563, 150385.

    Article  CAS  Google Scholar 

  155. Dong, W. F.; Chen, G.; Hu, X.; Zhang, X. D.; Shi, W. B.; Fu, Z. F. Molybdenum disulfides nanoflowers anchoring iron-based metal organic framework: A synergetic catalyst with superior peroxidase-mimicking activity for biosensing. Sens. Actuators B: Chem. 2020, 305, 127530.

    Article  CAS  Google Scholar 

  156. Lang, Z. Q.; Song, G. L.; Wu, P. P.; Zheng, D. J. A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution. Nano Res. 2022, 16, 2224–2229.

    Article  Google Scholar 

  157. Xiong, Y. H.; Su, L. J.; Yang, H. G.; Zhang, P.; Ye, F. G. Fabrication of copper sulfide using a Cu-based metal organic framework for the colorimetric determination and the efficient removal of Hg2+ in aqueous solutions. New J. Chem. 2015, 39, 9221–9227.

    Article  CAS  Google Scholar 

  158. Zhang, X. X.; Zhang, W. J.; Li, G.; Liu, Q. Q.; Xu, Y. S.; Liu, X. A ratiometric fluorescent probe for determination of the anthrax biomarker 2,6-pyridine dicarboxylic acid based on a terbium(III)-functionalized UIO-67 metal-organic framework. Microchim. Acta 2020, 187, 122.

    Article  Google Scholar 

  159. Lu, M. J.; Wang, J. L.; Ren, G. Y.; Qin, F. J.; Zhao, Z. Q.; Li, K.; Chen, W. X.; Lin, Y. Q. Superoxide-like Cu/GO single-atom catalysts nanozyme with high specificity and activity for removing superoxide free radicals. Nano Res. 2022, 15, 8804–8809.

    Article  CAS  Google Scholar 

  160. Li, W.; Qi, M. L.; Sun, X. L.; Chi, M. H.; Wan, Y.; Zheng, X. F.; Li, C. Y.; Wang, L.; Dong, B. Novel dental adhesive containing silver exchanged EMT zeolites against cariogenic biofilms to combat dental caries. Microporous Mesoporous Mater. 2020, 299, 110113.

    Article  CAS  Google Scholar 

  161. Sun, X. K.; Sun, J.; Dong, B.; Huang, G. S.; Zhang, L.; Zhou, W. H.; Lv, J. K.; Zhang, X. R.; Liu, M.; Xu, L. et al. Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites. Biomaterials 2019, 201, 42–52.

    Article  CAS  Google Scholar 

  162. Liu, J. T.; Huang, J.; Zhang, L.; Lei, J. P. Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chem. Soc. Rev. 2021, 50, 1188–1218.

    Article  CAS  Google Scholar 

  163. Zhou, X. D.; Zhao, B.; Lv, H. L. Low-dimensional cobalt doped carbon composite towards wideband electromagnetic dissipation. Nano Res. 2022, 16, 70–79.

    Article  Google Scholar 

  164. Zhang, J. B.; Han, J. W.; Li, H.; Li, Z. Y.; Zou, P. F.; Li, J. X.; Zhao, T.; Che, J. W.; Yang, Y.; Yang, M. Y. et al. Lymphocyte membrane-and 12p1-dual-functionalized nanoparticles for free HIV-1 trapping and precise siRNA delivery into HIV-1-infected cells. Adv. Sci. 2022, 10, 2300282.

    Article  Google Scholar 

  165. Chen, W. H.; Vázquez-González, M.; Kozell, A.; Cecconello, A.; Willner, I. Cu2+-modified metal-organic framework nanoparticles: A peroxidase-mimicking nanoenzyme. Small 2018, 14, 1703149.

    Article  Google Scholar 

  166. Chen, W. F.; Liu, S. Y.; Fu, Y. K.; Yan, H. C.; Qin, L.; Lai, C.; Zhang, C.; Ye, H. Y.; Chen, W. J.; Qin, F. Z. et al. Recent advances in photoelectrocatalysis for environmental applications: Sensing, pollutants removal and microbial inactivation. Coord. Chem. Rev. 2022, 454, 214341.

    Article  CAS  Google Scholar 

  167. An, H. D.; Li, M. M.; Gao, J.; Zhang, Z. J.; Ma, S. Q.; Chen, Y. Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coord. Chem. Rev. 2019, 384, 90–106.

    Article  CAS  Google Scholar 

  168. Tang, D. S.; Yu, Y. J.; Zhang, J. B.; Dong, X. Y.; Liu, C. Y.; Xiao, H. H. Self-sacrificially degradable pseudo-semiconducting polymer nanoparticles that integrate NIR-II fluorescence bioimaging, photodynamic immunotherapy, and photo-activated chemotherapy. Adv. Mater. 2022, 34, 2203820.

    Article  CAS  Google Scholar 

  169. Cheng, S.; Qi, M. L.; Li, W.; Sun, W. Y.; Li, M. Q.; Lin, J. Y.; Bai, X.; Sun, Y.; Dong, B.; Wang, L. Dual-responsive nanocomposites for synergistic antibacterial therapies facilitating bacteria-infected wound healing. Adv. Healthc. Mater. 2022, 12, 2202652.

    Article  Google Scholar 

  170. Wang, K. C.; Feng, D. W.; Liu, T. F.; Su, J.; Yuan, S.; Chen, Y. P.; Bosch, M.; Zou, X. D.; Zhou, H. C. A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J. Am. Chem. Soc. 2014, 136, 13983–13986.

    Article  CAS  Google Scholar 

  171. Lian, X. Z.; Chen, Y. P.; Liu, T. F.; Zhou, H. C. Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chem. Sci. 2016, 7, 6969–6973.

    Article  CAS  Google Scholar 

  172. Jin, T.; Li, Y. L.; Jing, W. J.; Li, Y. C.; Fan, L. Z.; Li, X. H. Cobalt-based metal organic frameworks: A highly active oxidase-mimicking nanozyme for fluorescence “turn-on” assays of biothiol. Chem. Commun. 2020, 56, 659–662.

    Article  CAS  Google Scholar 

  173. Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.

    Article  CAS  Google Scholar 

  174. Zhou, Y. Z.; Yang, T.; Liang, K.; Chandrawati, R. Metal-organic frameworks for therapeutic gas delivery. Adv. Drug Deliv. Rev. 2021, 171, 199–214.

    Article  CAS  Google Scholar 

  175. Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149–4155.

    Article  CAS  Google Scholar 

  176. Gao, Z. G.; Li, Y. J.; Zhang, Y.; Cheng, K. W.; An, P. J.; Chen, F. H.; Chen, J.; You, C. Q.; Zhu, Q.; Sun, B. W. Biomimetic platinum nanozyme immobilized on 2D metal-organic frameworks for mitochondrion-targeting and oxygen self-supply photodynamic therapy. ACS Appl. Mater. Interfaces 2020, 12, 1963–1972.

    Article  CAS  Google Scholar 

  177. Yuan, A.; Lu, Y. W.; Zhang, X. D.; Chen, Q. M.; Huang, Y. M. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing. J. Mater. Chem. B 2020, 8, 9295–9303.

    Article  Google Scholar 

  178. Zhang, Y.; Dai, C. L.; Liu, W.; Wang, Y. Y.; Ding, F.; Zou, P.; Wang, X. X.; Zhao, Q. B.; Rao, H. B. Ultrathin films of a metal-organic framework prepared from 2-methylimidazole, manganese(II) and cobalt(II) with strong oxidase-mimicking activity for colorimetric determination of glutathione and glutathione reductase activity. Microchim. Acta 2019, 186, 340.

    Article  Google Scholar 

  179. Zhang, X. L.; Li, G. L.; Wu, D.; Li, X. L.; Hu, N.; Chen, J.; Chen, G.; Wu, Y. N. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens. Bioelectron. 2019, 137, 178–198.

    Article  CAS  Google Scholar 

  180. Wang, Y.; Feng, L.; Pang, J. D.; Li, J. L.; Huang, N.; Day, G. S.; Cheng, L.; Drake, H. F.; Wang, Y.; Lollar, C. et al. Photosensitizer-anchored 2D MOF nanosheets as highly stable and accessible catalysts toward artemisinin production. Adv. Sci. 2019, 6, 1802059.

    Article  Google Scholar 

  181. Wang, J. N.; Wei, T. X.; Liu, Y. C.; Bao, M. Y.; Feng, R.; Qian, Y. X.; Yang, X.; Si, L.; Dai, Z. H. Colloidal-sized zirconium porphyrin metal-organic frameworks with improved peroxidase-mimicking catalytic activity, stability and dispersity. Analyst 2020, 145, 3002–3008.

    Article  CAS  Google Scholar 

  182. Pan, Y. D.; Pang, Y. J.; Shi, Y.; Zheng, W.; Long, Y. J.; Huang, Y. M.; Zheng, H. Z. One-pot synthesis of a composite consisting of the enzyme ficin and a zinc(II)-2-methylimidazole metal organic framework with enhanced peroxidase activity for colorimetric detection for glucose. Microchim. Acta 2019, 186, 213.

    Article  Google Scholar 

  183. Kong, W. S.; Guo, X. X.; Jing, M.; Qu, F. L.; Lu, L. M. Highly sensitive photoelectrochemical detection of bleomycin based on Au/WS2 nanorod array as signal matrix and Ag/ZnMOF nanozyme as multifunctional amplifier. Biosens. Bioelectron. 2020, 150, 111875.

    Article  CAS  Google Scholar 

  184. Zhang, T. T.; Xing, Y.; Song, Y.; Gu, Y.; Yan, X. Y.; Lu, N. N.; Liu, H.; Xu, Z. Q.; Xu, H. X.; Zhang, Z. Q. et al. AuPt/MOF-graphene: A synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal. Chem. 2019, 91, 10589–10595.

    Article  CAS  Google Scholar 

  185. Chakraborty, I.; Bodurtha, K. J.; Heeder, N. J.; Godfrin, M. P.; Tripathi, A.; Hurt, R. H.; Shukla, A.; Bose, A. Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl. Mater. Interfaces 2014, 6, 16472–16475.

    Article  CAS  Google Scholar 

  186. Hassan, M. H.; Andreescu, D.; Andreescu, S. Cerium oxide nanoparticles stabilized within metal-organic frameworks for the degradation of nerve agents. ACS Appl. Nano Mater. 2020, 3, 3288–3294.

    Article  CAS  Google Scholar 

  187. Liu, J.; Zhang, W.; Peng, M. H.; Ren, G. Y.; Guan, L. H.; Li, K.; Lin, Y. Q. ZIF-67 as a template generating and tuning “raisin pudding”-type nanozymes with multiple enzyme-like activities: Toward online electrochemical detection of 3,4-dihydroxyphenylacetic acid in living brains. ACS Appl. Mater. Interfaces 2020, 12, 29631–29640.

    CAS  Google Scholar 

  188. Zhao, Z. H.; Lin, T. R.; Liu, W. R.; Hou, L.; Ye, F. G.; Zhao, S. L. Colorimetric detection of blood glucose based on GOx@ZIF-8@Fe-polydopamine cascade reaction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 240–247.

    Article  CAS  Google Scholar 

  189. Liu, T. T.; Tian, J.; Cui, L.; Liu, Q. Y.; Wu, L. L.; Zhang, X. M. Facile strategy to prepare a metalloporphyrin-based hydrophilic porous organic polymer with enhanced peroxidase-like activity and high stability for colorimetric detection of H2O2 and glucose. Colloids Surf. B: Biointerfaces 2019, 178, 137–145.

    Article  CAS  Google Scholar 

  190. Song, C.; Ding, W.; Liu, H. B.; Zhao, W. W.; Yao, Y. W.; Yao, C. Label-free colorimetric detection of deoxyribonuclease I activity based on the DNA-enhanced peroxidase-like activity of MIL-53(Fe). New J. Chem. 2019, 43, 12776–12784.

    Article  CAS  Google Scholar 

  191. de S Pessôa, G.; Júnior, C. A. L.; Madrid, K. C.; Arruda, M. A. Z. A quantitative approach for Cd, Cu, Fe and Mn through laser ablation imaging for evaluating the translocation and accumulation of metals in sunflower seeds. Talanta 2017, 167, 317–324.

    Article  Google Scholar 

  192. Alsharabasy, A. M.; Pandit, A.; Farràs, P. Recent advances in the design and sensing applications of hemin/coordination polymer-based nanocomposites. Adv. Mater. 2021, 33, 2003883.

    Article  CAS  Google Scholar 

  193. Zheng, H. Q.; Liu, C. Y.; Zeng, X. Y.; Chen, J.; Lü, J.; Lin, R. G.; Cao, R.; Lin, Z. J.; Su, J. W. MOF-808: A metal-organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg. Chem. 2018, 57, 9096–9104.

    Article  CAS  Google Scholar 

  194. Alizadeh, N.; Salimi, A.; Hallaj, R.; Fathi, F.; Soleimani, F. Nihemin metal-organic framework with highly efficient peroxidase catalytic activity: Toward colorimetric cancer cell detection and targeted therapeutics. J. Nanobiotechnol. 2018, 16, 93.

    Article  CAS  Google Scholar 

  195. Wang, C. H.; Gao, J.; Tan, H. L. Integrated antibody with catalytic metal-organic framework for colorimetric immunoassay. ACS Appl. Mater. Interfaces 2018, 10, 25113–25120.

    Article  CAS  Google Scholar 

  196. Sun, Z. W.; Wu, S.; Ma, J. H.; Shi, H.; Wang, L.; Sheng, A. Z.; Yin, T. T.; Sun, L. Z.; Li, G. X. Colorimetric sensor array for human semen identification designed by coupling zirconium metal-organic frameworks with DNA-modified gold nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 36316–36323.

    Article  CAS  Google Scholar 

  197. Luo, Z. B.; Sun, D. P.; Tong, Y. L.; Zhong, Y. S.; Chen, Z. G. DNA nanotetrahedron linked dual-aptamer based voltammetric aptasensor for cardiac troponin I using a magnetic metal-organic framework as a label. Microchim. Acta 2019, 186, 374.

    Article  Google Scholar 

  198. Tian, J. J.; Liang, Z. X.; Hu, O.; He, Q. D.; Sun, D. P.; Chen, Z. G. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochim. Acta 2021, 387, 138553.

    Article  CAS  Google Scholar 

  199. Hu, M.; Zhu, L.; Li, Z. Z.; Guo, C. P.; Wang, M. H.; Wang, C. B.; Du, M. CoNi bimetallic metal-organic framework as an efficient biosensing platform for miRNA 126 detection. Appl. Surf. Sci. 2021, 542, 148586.

    Article  CAS  Google Scholar 

  200. Li, Y.; Hu, M. Y.; Huang, X. Y.; Wang, M. H.; He, L. H.; Song, Y. P.; Jia, Q. J.; Zhou, N.; Zhang, Z. H.; Du, M. Multicomponent zirconium-based metal-organic frameworks for impedimetric aptasensing of living cancer cells. Sens. Actuators B: Chem. 2020, 306, 127608.

    Article  CAS  Google Scholar 

  201. Bao, T.; Fu, R. B.; Wen, W.; Zhang, X. H.; Wang, S. F. Target-driven cascade-amplified release of loads from DNA-gated metal-organic frameworks for electrochemical detection of cancer biomarker. ACS Appl. Mater. Interfaces 2020, 12, 2087–2094.

    Article  CAS  Google Scholar 

  202. Li, Y. L.; Yu, C.; Yang, B.; Liu, Z. R.; Xia, P. Y.; Wang, Q. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum. Biosens. Bioelectron. 2018, 102, 307–315.

    Article  CAS  Google Scholar 

  203. Hu, S. S.; Zhu, L.; Lam, C. W.; Guo, L. H.; Lin, Z. Y.; Qiu, B.; Wong, K. Y.; Chen, G. N.; Liu, Z. H. Fluorometric determination of the activity of inorganic pyrophosphatase and its inhibitors by exploiting the peroxidase mimicking properties of a two-dimensional metal organic framework. Microchim. Acta 2019, 186, 190.

    Article  Google Scholar 

  204. Tan, H. L.; Li, Q.; Zhou, Z. C.; Ma, C. J.; Song, Y. H.; Xu, F. G.; Wang, L. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal. Chim. Acta 2015, 856, 90–95.

    Article  CAS  Google Scholar 

  205. Feng, L. P.; Liu, M.; Liu, H.; Fan, C.; Cai, Y. Y.; Chen, L. J.; Zhao, M. L.; Chu, S.; Wang, H. High-throughput and sensitive fluorimetric strategy for microRNAs in blood using wettable microwells array and silver nanoclusters with red fluorescence enhanced by metal organic frameworks. ACS Appl. Mater. Interfaces 2018, 10, 23647–23656.

    Article  CAS  Google Scholar 

  206. He, Y.; Wang, Y.; Yang, X.; Xie, S. B.; Yuan, R.; Chai, Y. Q. Metal-organic frameworks combining CoFe2O4 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of N-terminal pro-brain natriuretic peptide. ACS Appl. Mater. Interfaces 2016, 8, 7683–7690.

    Article  CAS  Google Scholar 

  207. Chen, X. J.; Qin, L. X.; Kang, S. Z.; Li, X. Q. A special zinc metal-organic frameworks-controlled composite nanosensor for highly sensitive and stable SERS detection. Appl. Surf. Sci. 2021, 550, 149302.

    Article  CAS  Google Scholar 

  208. Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J. J. X.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558–5566.

    Article  CAS  Google Scholar 

  209. Wu, C. J.; Wang, S. F.; Luo, X. L.; Yuan, R.; Yang, X. Adenosine triphosphate responsive metal-organic frameworks equipped with a DNA structure lock for construction of a ratiometric SERS biosensor. Chem. Commun. 2020, 56, 1413–1416.

    Article  CAS  Google Scholar 

  210. Cai, Y. Z.; Wu, Y. P.; Xuan, T.; Guo, X. Y.; Wen, Y.; Yang, H. F. Core-shell Au@metal-organic frameworks for promoting Raman detection sensitivity of methenamine. ACS Appl. Mater. Interfaces 2018, 10, 15412–15417.

    Article  CAS  Google Scholar 

  211. Yan, Z. Y.; Wang, F.; Deng, P. Y.; Wang, Y.; Cai, K.; Chen, Y. H.; Wang, Z. H.; Liu, Y. Sensitive electrogenerated chemiluminescence biosensors for protein kinase activity analysis based on bimetallic catalysis signal amplification and recognition of Au and Pt loaded metal-organic frameworks nanocomposites. Biosens. Bioelectron. 2018, 109, 132–138.

    Article  CAS  Google Scholar 

  212. Luo, F. Q.; Lin, Y. L.; Zheng, L. Y.; Lin, X. M.; Chi, Y. W. Encapsulation of hemin in metal-organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral condition. ACS Appl. Mater. Interfaces 2015, 7, 11322–11329.

    Article  CAS  Google Scholar 

  213. Li, H. D.; Sun, Y.; Li, Y. H.; Du, J. X. Alkaline phosphatase activity assay with luminescent metal organic frameworks-based chemiluminescent resonance energy transfer platform. Microchem. J. 2021, 160, 105665.

    Article  CAS  Google Scholar 

  214. Bai, W. Q.; Cui, A. P.; Liu, M. Z.; Qiao, X. Z.; Li, Y.; Wang, T. Signal-off electrogenerated chemiluminescence biosensing platform based on the quenching effect between ferrocene and Ru(bpy)32+-functionalized metal-organic frameworks for the detection of methylated RNA. Anal. Chem. 2019, 91, 11840–11847.

    Article  CAS  Google Scholar 

  215. Sun, Y.; Xu, X. T.; Zhao, Y. X.; Tan, H. N.; Li, Y. H.; Du, J. X. Luminescent metal organic frameworks-based chemiluminescence resonance energy transfer platform for turn-on detection of fluoride ion. Talanta 2020, 209, 120582.

    Article  CAS  Google Scholar 

  216. Han, R.; Sun, Y. L.; Lin, Y. N.; Liu, H.; Dai, Y. X.; Zhu, X. D.; Gao, D. D.; Wang, X. Y.; Luo, C. N. A simple chemiluminescent aptasensor for the detection of α-fetoprotein based on iron-based metal organic frameworks. New J. Chem. 2020, 44, 4099–4107.

    Article  CAS  Google Scholar 

  217. Xu, W. Q.; Jiao, L.; Yan, H. Y.; Wu, Y.; Chen, L. J.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101.

    Article  CAS  Google Scholar 

  218. Bai, H. S.; Bu, S. J.; Wang, C. Y.; Ma, C. Y.; Li, Z. Y.; Hao, Z.; Wan, J. Y.; Han, Y. Sandwich immunoassay based on antimicrobial peptide-mediated nanocomposite pair for determination of Escherichia coli O157:H7 using personal glucose meter as readout. Microchim. Acta 2020, 187, 220.

    Article  CAS  Google Scholar 

  219. Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl. Mater. Interfaces 2017, 9, 7465–7471.

    Article  CAS  Google Scholar 

  220. Zhong, X.; Xia, H.; Huang, W. Q.; Li, Z. X.; Jiang, Y. B. Biomimetic metal-organic frameworks mediated hybrid multienzyme mimic for tandem catalysis. Chem. Eng. J. 2020, 381, 122758.

    Article  CAS  Google Scholar 

  221. Zhang, Q.; Zhang, F. X.; Yu, L.; Kang, Q.; Chen, Y. Q.; Shen, D. Z. A differential photoelectrochemical method for glucose determination based on alkali-soaked zeolite imidazole framework-67 as both glucose oxidase and peroxidase mimics. Microchim. Acta 2020, 187, 244.

    Article  CAS  Google Scholar 

  222. Zhang, J. Y.; Liu, J. W. Nanozyme-based luminescence detection. Luminescence 2020, 35, 1185–1194.

    Article  CAS  Google Scholar 

  223. Chen, W. H.; Vázquez-González, M.; Zoabi, A.; Abu-Reziq, R.; Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles. Nat. Catal. 2018, 1, 689–695.

    Article  CAS  Google Scholar 

  224. Hamblin, M. R. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin. 2016, 6, 113–124.

    Article  Google Scholar 

  225. Wang, J.; Hu, Y. Y.; Zhou, Q.; Hu, L. Z.; Fu, W. S.; Wang, Y. Peroxidase-like activity of metal-organic framework [Cu(PDA)(DMF)] and its application for colorimetric detection of dopamine. ACS Appl. Mater. Interfaces 2019, 11, 44466–44473.

    Article  CAS  Google Scholar 

  226. Liang, L.; Huang, Y. J.; Liu, W. R.; Zuo, W. Y.; Ye, F. G.; Zhao, S. L. Colorimetric detection of salicylic acid in aspirin using MIL-53(Fe) nanozyme. Front. Chem. 2020, 8, 671.

    Article  CAS  Google Scholar 

  227. Valekar, A. H.; Batule, B. S.; Kim, M. I.; Cho, K. H.; Hong, D. Y.; Lee, U. H.; Chang, J. S.; Park, H. G.; Hwang, Y. K. Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine. Biosens. Bioelectron. 2018, 100, 161–168.

    Article  CAS  Google Scholar 

  228. Guo, J. J.; Wu, S.; Wang, Y.; Zhao, M. A label-free fluorescence biosensor based on a bifunctional MIL-101(Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level. Sens. Actuators B: Chem. 2020, 312, 128021.

    Article  CAS  Google Scholar 

  229. Hassanzadeh, J.; Khataee, A.; Eskandari, H. Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive detection of cholesterol. Sens. Actuators B: Chem. 2018, 259, 402–410.

    Article  CAS  Google Scholar 

  230. Wang, S. Q.; Deng, W. F.; Yang, L.; Tan, Y. M.; Xie, Q. J.; Yao, S. Z. Copper-based metal-organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus. ACS Appl. Mater. Interfaces 2017, 9, 24440–24445.

    Article  CAS  Google Scholar 

  231. Cheng, N.; Zhu, C. Z.; Wang, Y. L.; Du, D.; Zhu, M. J.; Luo, Y. B.; Xu, W. T.; Lin, Y. H. Nanozyme enhanced colorimetric immunoassay for naked-eye detection of Salmonella enteritidis. J. Anal. Test. 2019, 3, 99–106.

    Article  Google Scholar 

  232. Wang, C. H.; Tang, G.; Tan, H. L. Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Microchim. Acta 2018, 185, 475.

    Article  Google Scholar 

  233. Li, C. R.; Hai, J.; Fan, L.; Li, S. L.; Wang, B. D.; Yang, Z. Y. Amplified colorimetric detection of Ag+ based on Ag+-triggered peroxidase-like catalytic activity of ZIF-8/GO nanosheets. Sens. Actuators B: Chem. 2019, 284, 213–219.

    Article  CAS  Google Scholar 

  234. Vickers, N. J. Animal communication: When I’m calling you, will you answer too. Curr. Biol. 2017, 27, R713–R715.

    Article  CAS  Google Scholar 

  235. Daaboul, G. G.; Vedula, R. S.; Ahn, S.; Lopez, C. A.; Reddington, A.; Ozkumur, E.; Ünlü, M. S. LED-based Interferometric reflectance imaging sensor for quantitative dynamic monitoring of biomolecular interactions. Biosens. Bioelectron. 2011, 26, 2221–2227.

    Article  CAS  Google Scholar 

  236. Li, S. Q.; Hu, X.; Chen, Q. M.; Zhang, X. D.; Chai, H. X.; Huang, Y. M. Introducing bifunctional metal-organic frameworks to the construction of a novel ratiometric fluorescence sensor for screening acid phosphatase activity. Biosens. Bioelectron. 2019, 137, 133–139.

    Article  CAS  Google Scholar 

  237. Chen, Q. M.; Li, S. Q.; Liu, Y.; Zhang, X. D.; Tang, Y.; Chai, H. X.; Huang, Y. M. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B: Chem 2020, 305, 127511.

    Article  CAS  Google Scholar 

  238. Li, X. Y.; Li, X. M.; Li, D. D.; Zhao, M.; Wu, H. P.; Shen, B.; Liu, P.; Ding, S. J. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme. Biosens. Bioelectron. 2020, 168, 112554.

    Article  CAS  Google Scholar 

  239. Sun, D. P.; Luo, Z. B.; Lu, J.; Zhang, S. S.; Che, T.; Chen, Z. G.; Zhang, L. Y. Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens. Bioelectron. 2019, 134, 49–56.

    Article  CAS  Google Scholar 

  240. Ling, P. H.; Qian, C. H.; Yu, J. J.; Gao, F. Artificial nanozyme based on platinum nanoparticles anchored metal-organic frameworks with enhanced electrocatalytic activity for detection of telomeres activity. Biosens. Bioelectron. 2020, 149, 111838.

    Article  CAS  Google Scholar 

  241. Jangi, S. R. H.; Akhond, M. Synthesis and characterization of a novel metal-organic framework called nanosized electroactive quasi-coral-340 (NEQC-340) and its application for constructing a reusable nanozyme-based sensor for selective and sensitive glutathione quantification. Microchem. J. 2020, 158, 105328.

    Article  Google Scholar 

  242. Wu, Y. Z.; Ma, Y. J.; Xu, G. H.; Wei, F. D.; Ma, Y. S.; Song, Q.; Wang, X.; Tang, T.; Song, Y. Y.; Shi, M. L. et al. Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sens. Actuators B: Chem. 2017, 249, 195–202.

    Article  CAS  Google Scholar 

  243. Zhao, C.; Jiang, Z. W.; Mu, R. Z.; Li, Y. F. A novel sensor for dopamine based on the turn-on fluorescence of Fe-MIL-88 metal-organic frameworks-hydrogen peroxide-o-phenylenediamine system. Talanta 2016, 159, 365–370.

    Article  CAS  Google Scholar 

  244. Tan, H. L.; Ma, C. J.; Gao, L.; Li, Q.; Song, Y. H.; Xu, F. G.; Wang, T.; Wang, L. Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem.— Eur. J. 2014, 20, 16377–16383.

    Article  CAS  Google Scholar 

  245. Hou, L.; Qin, Y. M.; Lin, T. R.; Sun, Y.; Ye, F. G.; Zhao, S. L. Michael reaction-assisted fluorescent sensor for selective and one step determination of catechol via bifunctional Fe-MIL-88NH2 nanozyme. Sens. Actuators B: Chem. 2020, 321, 128547.

    Article  CAS  Google Scholar 

  246. Zhang, Y. M.; Song, J.; Shao, W. H.; Li, J. Au@NH2-MIL-125(Ti) heterostructure as light-responsive oxidase-like mimic for colorimetric sensing of cysteine. Microporous Mesoporous Mater. 2021, 310, 110642.

    Article  CAS  Google Scholar 

  247. Wang, Y. F. Disparities in pediatric obesity in the United States. Adv. Nutr. 2011, 2, 23–31.

    Article  CAS  Google Scholar 

  248. Savitz, J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry 2020, 25, 131–147.

    Article  Google Scholar 

  249. Chen, B. J.; Zhang, Y. S.; Lin, L.; Chen, H.; Zhao, M. J. Au nanoparticles @metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: Preparation, characterization, and electrochemical detection of tyrosine. J. Electroanal. Chem. 2020, 863, 114052.

    Article  CAS  Google Scholar 

  250. Gill, A. A. S.; Singh, S.; Agrawal, N.; Nate, Z.; Chiwunze, T. E.; Thapliyal, N. B.; Chauhan, R.; Karpoormath, R. A poly(acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin. Microchim. Acta 2020, 187, 79.

    Article  CAS  Google Scholar 

  251. Zhang, J. J.; Liu, J.; Zhang, Y.; Yu, F.; Wang, F.; Peng, Z. C.; Li, Y. C. Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer. Microchim. Acta 2018, 185, 78.

    Article  Google Scholar 

  252. Chen, H.; Wu, X. X.; Zhao, R.; Zheng, Z.; Yuan, Q. H.; Dong, Z. J.; Gan, W. Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole. Microchim. Acta 2019, 186, 623.

    Article  Google Scholar 

  253. Xiao, L. L.; Xu, R. Y.; Yuan, Q. H.; Wang, F. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 2017, 167, 39–43.

    Article  CAS  Google Scholar 

  254. Fu, K. X.; Zhang, R. L.; He, J. C.; Bai, H. P.; Zhang, G. L. Sensitive detection of ketamine with an electrochemical sensor based on UV-induced polymerized molecularly imprinted membranes at graphene and MOFs modified electrode. Biosens. Bioelectron. 2019, 143, 111636.

    Article  CAS  Google Scholar 

  255. Wang, J. J.; Zhao, J. H.; Yang, J.; Cheng, J.; Tan, Y. Z.; Feng, H. H.; Li, Y. C. An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination. Microchim. Acta 2020, 187, 380.

    Article  CAS  Google Scholar 

  256. Feng, X. G.; Lin, S. R.; Li, M.; Bo, X. J.; Guo, L. P. Comparative study of carbon fiber structure on the electrocatalytic performance of ZIF-67. Anal. Chim. Acta 2017, 984, 96–106.

    Article  CAS  Google Scholar 

  257. Peng, Z. W.; Jiang, Z. W.; Huang, X.; Li, Y. F. A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal-organic framework composite modified glassy carbon electrode. RSC Adv. 2016, 6, 13742–13748.

    Article  CAS  Google Scholar 

  258. Wu, X. Q.; Feng, P. Q.; Guo, Z. Q.; Wei, X. H. Water-stable 1D double-chain Cu metal-organic framework-based electrochemical biosensor for detecting L-tyrosine. Langmuir 2020, 36, 14123–14129.

    Article  CAS  Google Scholar 

  259. Kishioka, S. Y.; Yamada, A. Kinetic study of the catalytic oxidation of benzyl alcohols by phthalimide-N-oxyl radical electrogenerated in acetonitrile using rotating disk electrode voltammetry. J. Electroanal. Chem. 2005, 578, 71–77.

    Article  CAS  Google Scholar 

  260. Zhai, X. R.; Li, S.; Chen, X.; Hua, Y.; Wang, H. Coating silver metal-organic frameworks onto nitrogen-doped porous carbons for the electrochemical sensing of cysteine. Microchim. Acta 2020, 187, 493.

    Article  CAS  Google Scholar 

  261. Zhang, Q. B.; Song, K.; Zhao, J. W.; Kong, X. G.; Sun, Y. J.; Liu, X. M.; Zhang, Y. L.; Zeng, Q. H.; Zhang, H. Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4: Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic. J. Colloid Interface Sci. 2009, 336, 171–175.

    Article  CAS  Google Scholar 

  262. Niu, X. H.; Shi, Q. R.; Zhu, W. L.; Liu, D.; Tian, H. Y.; Fu, S. F.; Cheng, N.; Li, S. Q.; Smith, J. N.; Du, D. et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495.

    Article  CAS  Google Scholar 

  263. Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem. 2020, 132, 2585–2596.

    Article  Google Scholar 

  264. Wu, J. J. X.; Li, S. R.; Wei, H. Multifunctional nanozymes: Enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horiz. 2018, 3, 367–382.

    Article  CAS  Google Scholar 

  265. Li, X.; Wang, L. J.; Du, D.; Ni, L.; Pan, J. M.; Niu, X. H. Emerging applications of nanozymes in environmental analysis: Opportunities and trends. Trends Analyt. Chem. 2019, 120, 115653.

    Article  CAS  Google Scholar 

  266. Gooding, J. J. Can nanozymes have an impact on sensing? ACS Sens. 2019, 4, 2213–2214.

    Article  CAS  Google Scholar 

  267. Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412–5419.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2022YFA1103403), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (No. ZYYCXTD-D-202208), Tsinghua-Foshan Innovation Special Fund (No. 2022THFS6121), the National Natural Science Foundation of China (No. 22074157), Postdoctoral Innovative Talent Support Program (No. BX20220160), China Postdoctoral Science Foundation Funded Project (No. 2022M711779), Young Elite Scientist Sponsorship Program of the Beijing Association for Science and Technology (No. BYESS2023166), and Tsinghua-Peking Joint Center for Life Sciences Postdoctoral Foundation Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjian Ai or Qionglin Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandio, I., Ai, Y., Wu, L. et al. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 17, 39–64 (2024). https://doi.org/10.1007/s12274-023-5770-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5770-3

Keywords

Navigation