Skip to main content
Log in

A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The anode activity can to a great degree limit the cathodic hydrogen evolution efficiency in an electrolyte cell. Thus, cost-efficient electrocatalysts with good water oxidation performance and stability are highly desired in widespread implementation of the hydrogen production from water splitting. This paper proposes a facile corrosion-reconstruction strategy to transform Fe surface into a Fe-Co hydroxide layer to improve the oxygen evolution activity. The as-prepared catalyst was measured to have an over-potentential as low as 320 mV at 100 mA·cm−2, and its stability even exceeded 600 h. Surface and Raman spectroscopy analyses indicated that the catalyst experienced chemical changes from hydroxides to oxyhydroxides and Co2+ to Co3+ during oxygen evolution reaction (OER). The corrosion-reconstruction is not only an economical method to synthesize a highly efficient, stable and durable Fe-based catalysts, it also converses the detrimental corrosion into a beneficial catalyst fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J. et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 2018, 4, 285–297.

    Article  CAS  Google Scholar 

  2. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  CAS  Google Scholar 

  3. Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

    Article  CAS  Google Scholar 

  4. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  5. Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

    Article  CAS  Google Scholar 

  6. Masa, J.; Andronescu, C.; Schuhmann, W. Electrocatalysis as the nexus for sustainable renewable energy: The Gordian knot of activity, stability, and selectivity. Angew. Chem., Int. Ed. 2020, 59, 15298–15312.

    Article  CAS  Google Scholar 

  7. Liu, B.; Wang, Y.; Peng, H. Q.; Yang, R. O.; Jiang, Z.; Zhou, X. T.; Lee, C. S.; Zhao, H. J.; Zhang, W. J. Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv. Mater. 2018, 30, 1803144.

    Article  Google Scholar 

  8. Cai, M. K.; Liu, Q. L.; Xue, Z. Q.; Li, Y. L.; Fan, Y. N.; Huang, A. P.; Li, M. R.; Croft, M.; Tyson, T. A.; Ke, Z. F. et al. Constructing 2D MOFs from 2D LDHs: A highly efficient and durable electrocatalyst for water oxidation. J. Mater. Chem. A 2020, 8, 190–195.

    Article  CAS  Google Scholar 

  9. Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

    Article  CAS  Google Scholar 

  10. Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

    Article  CAS  Google Scholar 

  11. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  12. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  13. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  14. Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

    Article  CAS  Google Scholar 

  15. Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X. X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6,000 hours. Nat. Commun. 2018, 9, 2609.

    Article  Google Scholar 

  16. Liu, X. P.; Gong, M. X.; Deng, S. F.; Zhao, T. H.; Shen, T.; Zhang, J.; Wang, D. L. Transforming damage into benefit: Corrosion engineering enabled electrocatalysts for water splitting. Adv. Funct. Mater. 2021, 31, 2009032.

    Article  CAS  Google Scholar 

  17. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  18. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    Article  CAS  Google Scholar 

  19. Zheng, X. B.; Chen, Y. P.; Lai, W. H.; Li, P.; Ye, C. L.; Liu, N. N.; Dou, S. X.; Pan, H. G.; Sun, W. P. Enriched d-band holes enabling fast oxygen evolution kinetics on atomic-layered defect-rich lithium cobalt oxide nanosheets. Adv. Funct. Mater. 2022, 32, 2200663.

    Article  CAS  Google Scholar 

  20. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    Article  CAS  Google Scholar 

  21. Gong, L. Q.; Yang, H.; Wang, H. M.; Qi, R. J.; Wang, J. L.; Chen, S. H.; You, B.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021, 14, 4528–4533.

    Article  CAS  Google Scholar 

  22. Zhong, D. Z.; Li, T.; Wang, D.; Li, L. N.; Wang, J. C.; Hao, G. Y.; Liu, G.; Zhao, Q.; Li, J. P. Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Res. 2022, 15, 162–169.

    Article  CAS  Google Scholar 

  23. Huang, W. Z.; Li, J. T.; Liao, X. B.; Lu, R. H.; Ling, C. H.; Liu, X.; Meng, J. S.; Qu, L. B.; Lin, M. T.; Hong, X. F. et al. Ligand modulation of active sites to promote electrocatalytic oxygen evolution. Adv. Mater. 2022, 34, 2200270.

    Article  CAS  Google Scholar 

  24. Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem., Int. Ed. 2017, 56, 5994–6021.

    Article  Google Scholar 

  25. Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

    Article  CAS  Google Scholar 

  26. Luo, J.; Wang, X. H.; Shen, L.; Fu, H. C.; Chen, X. H.; Wu, L. L.; Zhang, Q.; Luo, H. Q.; Li, N. B. Corrosion-engineered Mo-containing FeCo-(oxy)hydroxide electrocatalysts for superior oxygen evolution reaction. ACS Sustainable Chem. Eng. 2021, 9, 12233–12241.

    Article  CAS  Google Scholar 

  27. López-Fernández, E.; Gil-Rostra, J.; Espinós, J. P.; González-Elipe, A. R.; de Lucas Consuegra, A.; Yubero, F. Chemistry and electrocatalytic activity of nanostructured nickel electrodes for water electrolysis. ACS Catal. 2020, 10, 6159–6170.

    Article  Google Scholar 

  28. Wang, Y.; Zhu, Y. L.; Zhao, S. L.; She, S. X.; Zhang, F. F.; Chen, Y.; Williams, T.; Gengenbach, T.; Zu, L. H.; Mao, H. Y. et al. Anion etching for accessing rapid and deep self-reconstruction of precatalysts for water oxidation. Matter 2020, 3, 2124–2137.

    Article  Google Scholar 

  29. Liu, X.; Guo, R. T.; Ni, K.; Xia, F. J.; Niu, C. J.; Wen, B.; Meng, J. S.; Wu, P. J.; Wu, J. S.; Wu, X. J. et al. Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 2020, 32, 2001136.

    Article  CAS  Google Scholar 

  30. Song, C. W.; Lim, J.; Bae, H. B.; Chung, S. Y. Discovery of crystal structure-stability correlation in iridates for oxygen evolution electrocatalysis in acid. Energy Environ. Sci. 2020, 13, 4178–4188.

    Article  CAS  Google Scholar 

  31. Shen, J. Y.; Wang, M.; Zhao, L.; Jiang, J.; Liu, H.; Liu, J. X. Self-supported stainless steel nanocone array coated with a layer of Ni-Fe oxides/(oxy)hydroxides as a highly active and robust electrode for water oxidation. ACS Appl. Mater. Interfaces 2018, 10, 8786–8796.

    Article  CAS  Google Scholar 

  32. Gao, T. T.; Zhou, C. X.; Chen, X. J.; Huang, Z. H.; Yuan, H. Y.; Xiao, D. Surface in situ self-reconstructing hierarchical structures derived from ferrous carbonate as efficient bifunctional iron-based catalysts for oxygen and hydrogen evolution reactions. J. Mater. Chem. A 2020, 8, 18367–18375.

    Article  CAS  Google Scholar 

  33. Liu, D.; Ai, H. Q.; Li, J. L.; Fang, M. L.; Chen, M. P.; Liu, D.; Du, X. Y.; Zhou, P. F.; Li, F. F.; Lo, K. H. et al. Surface reconstruction and phase transition on vanadium-cobalt-iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv. Energy Mater. 2020, 10, 2002464.

    Article  CAS  Google Scholar 

  34. Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    Article  CAS  Google Scholar 

  35. Yang, H.; Dong, C. N. L.; Wang, H. M.; Qi, R. J.; Gong, L. Q.; Lu, Y. R.; He, C. H.; Chen, S. H.; You, B.; Liu, H. et al. Constructing nickel-iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proc. Natl. Acad. Sci. USA. 2022, 19, e2202812119.

    Article  Google Scholar 

  36. Li, F. M.; Huang, L.; Zaman, S.; Guo, W.; Liu, H. F.; Guo, X. P.; Xia, B. Y. Corrosion chemistry of electrocatalysts. Adv. Mater., in press, doi: https://doi.org/10.1002/adma.202200840.

  37. Zhang, Q.; Zhong, H. X.; Meng, F. L.; Bao, D.; Zhang, X. B.; Wei, X. L. Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res. 2018, 11, 1294–1300.

    Article  CAS  Google Scholar 

  38. Zhao, J. W.; Shi, Z. X.; Li, C. F.; Gu, L. F.; Li, G. R. Boosting the electrocatalytic performance of NiFe layered double hydroxides for the oxygen evolution reaction by exposing the highly active edge plane (012). Chem. Sci. 2021, 12, 650–659.

    Article  CAS  Google Scholar 

  39. Koza, J. A.; Hull, C. M.; Liu, Y. C.; Switzer, J. A. Deposition of β-Co(OH)2 films by electrochemical reduction of tris(ethylenediamine)cobalt(III) in alkaline solution. Chem. Mater. 2013, 25, 1922–1926.

    Article  CAS  Google Scholar 

  40. Muthurasu, A.; Tiwari, A. P.; Chhetri, K.; Dahal, B.; Kim, H. Y. Construction of iron doped cobalt- vanadate- cobalt oxide with metal-organic framework oriented nanoflakes for portable rechargeable zinc-air batteries powered total water splitting. Nano Energy 2021, 88, 106238.

    Article  CAS  Google Scholar 

  41. Liu, X. P.; Gong, M. X.; Xiao, D. D.; Deng, S. F.; Liang, J. N.; Zhao, T. H.; Lu, Y.; Shen, T.; Zhang, J.; Wang, D. L. Turning waste into treasure: Regulating the oxygen corrosion on Fe foam for efficient electrocatalysis. Small 2020, 16, 2000663.

    Article  CAS  Google Scholar 

  42. Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

    Article  CAS  Google Scholar 

  43. Zhu, K. Y.; Chen, J. Y.; Wang, W. J.; Liao, J. W.; Dong, J. C.; Chee, M. O. L.; Wang, N.; Dong, P.; Ajayan, P. M.; Gao, S. P. et al. Etching-doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting. Adv. Funct. Mater. 2020, 30, 2003556.

    Article  CAS  Google Scholar 

  44. Liu, S. J.; Zhu, J.; Sun, M.; Ma, Z. X.; Hu, K.; Nakajima, T.; Liu, X. H.; Schmuki, P.; Wang, L. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets. J. Mater. Chem. A 2020, 8, 2490–2497.

    Article  CAS  Google Scholar 

  45. Liu, X.; Xia, F. J.; Guo, R. T.; Huang, M.; Meng, J. S.; Wu, J. S.; Mai, L. Q. Ligand and anion Co-leaching induced complete reconstruction of polyoxomolybdate-organic complex oxygen-evolving pre-catalysts. Adv. Funct. Mater. 2021, 31, 2101792.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (key project Grant No. 51731008 and general project Grant No. 51671163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Ling Song.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, Z., Song, GL., Wu, P. et al. A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution. Nano Res. 16, 2224–2229 (2023). https://doi.org/10.1007/s12274-022-5006-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5006-y

Keywords

Navigation