Skip to main content
Log in

Stretchable iontronics with robust interface bonding between dielectric and ion-conducting elastomers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Dry ion-conducting elastomers (ICEs) are emerging stretchable and ionic conductive materials that are demonstrated with excellent thermal stability and great promise in multifunctional iontronic devices. Nevertheless, the poor interface between the ICEs and the dielectric material is one of the issues hindering the application of the stretchable iontronic device. Herein, a polydimethylsiloxane (PDMS) based ion-conducting elastomer with dynamic crosslinking structures is reported, which achieves the stretchability of 475% and healing efficiency of 99%. More importantly, a robust interface bonding can be generated between the electrode and the dielectric material, which is beneficial to enhance the performance and lifespan of the flexible iontronic devices. Using this PDMS based ICE as the electrode and PDMS as the dielectric material, two stretchable iontronic devices (triboelectric nanogenerator and capacitive pressure sensor) are realized with overall self-healing and stretchable capabilities. These findings provide a promising strategy to achieve integrate stretchable iontronics or electronics with a robust interface between the electrode and dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung, D.; Lim, C.; Shim, H. J.; Kim, Y.; Park, C.; Jung, J.; Han, S. I.; Sunwoo, S. H.; Cho, K. W.; Cha, G. D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021, 373, 1022–1026.

    Article  CAS  Google Scholar 

  2. Benight, S. J.; Wang, C.; Tok, J. B. H.; Bao, Z. N. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 2013, 38, 1961–1977.

    Article  CAS  Google Scholar 

  3. Bhatnagar, P.; Hong, J.; Patel, M.; Kim, J. Transparent photovoltaic skin for artificial thermoreceptor and nociceptor memory. Nano Energy 2022, 91, 106676.

    Article  CAS  Google Scholar 

  4. Mirvakili, S. M.; Hunter, I. W. Artificial muscles: Mechanisms, applications, and challenges. Adv. Mater. 2018, 30, 1704407.

    Article  Google Scholar 

  5. Chen, F.; Huang, Q. Y.; Zheng, Z. J. Permeable conductors for wearable and on-skin electronics. Small Structures 2022, 3, 2100135.

    Article  Google Scholar 

  6. Lee, Y.; Oh, J. Y.; Xu, W. T.; Kim, O.; Kim, T. R.; Kang, J.; Kim, Y.; Son, D.; Tok, J. B. H.; Park, M. J. et al. Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 2018, 4, eaat7387.

    Article  CAS  Google Scholar 

  7. Sun, H. Y.; Lu, Y.; Chen, Y. Y.; Yue, Y. Y.; Jiang, S. H.; Xu, X. W.; Mei, C. T.; Xiao, H. N.; Han, J. Q. Flexible environment-tolerant electroluminescent devices based on nanocellulose-mediated transparent electrodes. Carbohydr. Polym. 2022, 296, 119891.

    Article  CAS  Google Scholar 

  8. Roach, D. J.; Yuan, C.; Kuang, X.; Li, V. C. F.; Blake, P.; Romero, M. L.; Hammel, I.; Yu, K.; Qi, H. J. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interfaces 2019, 11, 19514–19521.

    Article  CAS  Google Scholar 

  9. Guo, Z. H.; Wang, H. L.; Shao, J. J.; Shao, Y. S.; Jia, L. Y.; Li, L. W.; Pu, X.; Wang, Z. L. Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci. Adv. 2022, 8, eabo5201.

    Article  CAS  Google Scholar 

  10. Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

    Article  Google Scholar 

  11. Sun, L. J.; Huang, H. F.; Ding, Q. Y.; Guo, Y. F.; Sun, W.; Wu, Z. C.; Qin, M. L.; Guan, Q. B.; You, Z. W. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 2022, 4, 98–107.

    Article  CAS  Google Scholar 

  12. Wang, R.; Han, L.; Wu, C. G.; Dong, Y. P.; Zhao, X. G. Localizable, identifiable, and perceptive untethered light-driven soft crawling robot. ACS Appl. Mater. Interfaces 2022, 14, 6138–6147.

    Article  CAS  Google Scholar 

  13. Chen, Z. H.; Fang, R.; Li, W.; Guan, J. G. Stretchable transparent conductors: From micro/macromechanics to applications. Adv. Mater. 2019, 31, 1900756.

    Article  Google Scholar 

  14. De Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes. Smart Mater. Struct. 2018, 27, 074002.

    Article  Google Scholar 

  15. Liao, X. Q.; Zhang, Z.; Liang, Q. J.; Liao, Q. L.; Zhang, Y. Flexible, cuttable, and self-waterproof bending strain sensors using microcracked gold nanofilms@paper substrate. ACS Appl. Mater. Interfaces 2017, 9, 4151–4158.

    Article  CAS  Google Scholar 

  16. Lee, H.; Lee, G.; Yun, J.; Keum, K.; Hong, S. Y.; Song, C.; Kim, J. W.; Lee, J. H.; Oh, S. Y.; Kim, D. S. et al. Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor. Chem. Eng. J. 2019, 366, 62–71.

    Article  CAS  Google Scholar 

  17. Gonzalez, M.; Axisa, F.; Bulcke, M. V.; Brosteaux, D.; Vandevelde, B.; Vanfleteren, J. Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 2008, 48, 825–832.

    Article  Google Scholar 

  18. Kim, K. H.; Vural, M.; Islam, M. F. Single-walled carbon nanotube aerogel-based elastic conductors. Adv. Mater. 2011, 27, 2865–2869.

    Article  Google Scholar 

  19. Nayak, P. K. Pulsed-grown graphene for flexible transparent conductors. Nanoscale Adv. 2019, 1, 1215–1223.

    Article  CAS  Google Scholar 

  20. Jung, J.; Cho, H.; Yuksel, R.; Kim, D.; Lee, H.; Kwon, J.; Lee, P.; Yeo, J.; Hong, S.; Unalan, H. E. et al. Stretchable/flexible silver nanowire electrodes for energy device applications. Nanoscale 2019, 11, 20356–20378.

    Article  CAS  Google Scholar 

  21. Kim, Y.; Kweon, O. Y.; Won, Y.; Oh, J. H. Deformable and stretchable electrodes for soft electronic devices. Macromol. Res. 2019, 23, 625–639.

    Article  Google Scholar 

  22. Kong, W. B.; Yang, Y. Y.; Wang, Y. J.; Cheng, H. F.; Yan, P. Y.; Huang, L.; Ning, J. Y.; Zeng, F. H.; Cai, X. F.; Wang, M. An ultralow hysteresis, self-healing, and stretchable conductor based on dynamic disulfide covalent adaptable networks. J. Mater. Chem. A 2022, 10, 2012–2020.

    Article  CAS  Google Scholar 

  23. Feng, J. N.; Wang, L.; Chen, Y. J.; Wang, P. Y.; Zhang, H. R.; He, X. M. PEO based polymer-ceramic hybrid solid electrolytes: A review. Nano Coeverg. 2021, 8, 2.

    Article  CAS  Google Scholar 

  24. Zhang, P. P.; Chen, Y. H.; Guo, Z. H.; Guo, W. B.; Pu, X.; Wang, Z. L. Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes. Adv. Funct. Mater. 2021, 30, 1909252.

    Article  Google Scholar 

  25. Yiming, B.; Han, Y.; Han, Z. L.; Zhang, X. N.; Li, Y.; Lian, W. Z.; Zhang, M. Q.; Yin, J.; Sun, T. L.; Wu, Z. L. et al. A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv. Mater. 2021, 33, 2006111.

    Article  CAS  Google Scholar 

  26. Shi, P. R.; Wang, Y. F.; Wan, K. N.; Zhang, C.; Liu, T. X. A waterproof ion-conducting fluorinated elastomer with 6000% stretchability, superior ionic conductivity, and harsh environment tolerance. Adv. Funct. Mater. 2022, 32, 2112293.

    Article  CAS  Google Scholar 

  27. Sun, J. M.; Pu, X.; Liu, M. M.; Yu, A. F.; Du, C. H.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 2018, 12, 6147–6155.

    Article  CAS  Google Scholar 

  28. Chen, J.; Gao, Y. Y.; Shi, L.; Yu, W.; Sun, Z. J.; Zhou, Y. F.; Liu, S.; Mao, H.; Zhang, D. Y.; Lu, T. Q. et al. Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing, and recyclability. Nat. Commun. 2022, 13, 4868.

    Article  CAS  Google Scholar 

  29. Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. G. Stretchable, transparent, ionic conductors. Science 2013, 341, 984–987.

    Article  CAS  Google Scholar 

  30. Shi, L.; Zhu, T. X.; Gao, G. X.; Zhang, X. Y.; Wei, W.; Liu, W. F.; Ding, S. J. Highly stretchable and transparent ionic conducting elastomers. Nat. Commuen. 2018, 9, 2630.

    Article  Google Scholar 

  31. Kim, B.; Park, T.; Oh, S. J.; Seo, J. H. Ion-conducting, supramolecular crosslinked elastomer with a wide linear range of strain resistances. ACS Appl. Polym. Mater. 2021, 3, 5012–5021.

    Article  CAS  Google Scholar 

  32. Liu, X. H.; Zhang, E. D.; Liu, J. M.; Qin, J. J.; Wu, M. Q.; Yang, C. L.; Liang, L. Y. Self-healing, reprocessable, degradable, thermadapt shape memory multifunctional polymers based on dynamic imine bonds and their application in nondestructively recyclable carbon fiber composites. Chem. Eng. J. 2023, 454, 139992.

    Article  CAS  Google Scholar 

  33. Li, G.; Li, C. L.; Li, G. D.; Yu, D. H.; Song, Z. P.; Wang, H. L.; Liu, X. N.; Liu, H.; Liu, W. X. Development of conductive hydrogels for fabricating flexible strain sensors. Small 2022, 18, 2101518.

    Article  CAS  Google Scholar 

  34. Wang, L. Y.; Wang, Y.; Yang, S.; Tao, X. M.; Zi, Y. L.; Daoud, W. A. Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy 2022, 91, 106611.

    Article  CAS  Google Scholar 

  35. Zhang, P. P.; Guo, W. B.; Guo, Z. H.; Ma, Y.; Gao, L.; Cong, Z. F.; Zhao, X. J.; Qiao, L. J.; Pu, X.; Wang, Z. L. Dynamically crosslinked dry ion-conducting elastomers for soft iontronics. Adv. Mater. 2021, 33, 2101396.

    Article  CAS  Google Scholar 

  36. Acosta, M.; Baiutti, F.; Tarancón, A.; MacManus-Driscoll, J. L. Nanostructured materials and interfaces for advanced ionic electronic conducting oxides. Adv. Mater. Ieterfaces 2019, 6, 1900462.

    Article  Google Scholar 

  37. Liu, L. J.; Han, Y. C.; Xing, Z. C.; Yong, H. D. Nonlinear deformation and instability of a dielectric elastomer tube actuator. Int. J. Non Linear Mech. 2022, 147, 104235.

    Article  Google Scholar 

  38. Li, M. L.; Wu, Y. Z.; Zhang, L.; Wo, H. L.; Huang, S. Y.; Li, W.; Zeng, X. Y.; Ye, Q. K.; Xu, T. B.; Luo, J. K. et al. Liquid metal-based electrical interconnects and interfaces with excellent stability and reliability for flexible electronics. Nanoscale 2019, 11, 5441–5449.

    Article  CAS  Google Scholar 

  39. Qi, D. P.; Zhang, K. Y.; Tian, G. W.; Jiang, B.; Huang, Y. D. Stretchable electronics based on PDMS substrates. Adv. Mater. 2021, 33, 2003155.

    Article  CAS  Google Scholar 

  40. Yang, H.; Wu, N. Q. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review. Energy Sci. Eng. 2022, 10, 1643–1671.

    Article  CAS  Google Scholar 

  41. Kujawska, A.; Knozowska, K.; Kujawa, J.; Li, G. Q.; Kujawski, W. Fabrication of PDMS based membranes with improved separation efficiency in hydrophobic pervaporation. Sep. Purif. Technol. 2020, 234, 116092.

    Article  Google Scholar 

  42. Lin, M. F.; Xiong, J. Q.; Wang, J. X.; Parida, K.; Lee, P. S. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 2018, 44, 248–255.

    Article  CAS  Google Scholar 

  43. Horowitz, A. I.; Panzer, M. J. Poly(dimethylsiloxane)-supported ionogels with a high ionic liquid loading. Angew. Chem., Int. Ed. 2014, 53, 9780–9783.

    Article  CAS  Google Scholar 

  44. Wang, P.; Yang, L.; Dai, B.; Yang, Z. H.; Guo, S.; Gao, G.; Xu, L. G.; Sun, M. Q.; Yao, K. L.; Zhu, J. Q. A self-healing transparent polydimethylsiloxane elastomer based on imine bonds. Eur. Polym. J. 2020, 123, 109382.

    Article  CAS  Google Scholar 

  45. Liu, Y.; Lee, J. Y.; Hong, L. Functionalized SiO2 in poly(ethylene oxide)-based polymer electrolytes. J. Power Sources 2002, 109, 507–514.

    Article  CAS  Google Scholar 

  46. Deshmukh, K.; Ahamed, M. B.; Sadasivuni, K. K.; Ponnamma, D.; AlMaadeed, M. A. A.; Deshmukh, R. R.; Pasha, S. K. K.; Polu, A. R.; Chidambaram, K. Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J. Appl. Polym. Sci. 2017, 134, 44427.

    Article  Google Scholar 

  47. Yang, S.; Yang, Z. Y.; Yang, J.; Li, E. Z.; Tang, B.; Yuan, Y. Research on Ba2Ti9O20-filled polybutadiene composites with near-zero temperature coefficient of dielectric constant by SiO2 addition. J. Mater. Sci.: Mater. Electron. 2022, 33, 25463–25474.

    CAS  Google Scholar 

  48. Zhu, S. S.; Zhang, J. Enhanced dielectric constant of acrylonitrile-butadiene rubber/barium titanate composites with mechanical reinforcement by nanosilica. Iran. Polym. J. 2017, 26, 239–251.

    Article  CAS  Google Scholar 

  49. Mao, Y. W.; Lin, S. T.; Zhao, X. H.; Anand, L. A large deformation viscoelastic model for double-network hydrogels. J. Mech. Phys. Solids 2017, 100, 103–130.

    Article  CAS  Google Scholar 

  50. Xu, K.; Shen, K. X.; Yu, J.; Yang, Y. X.; Wei, Y. T.; Lin, P. L.; Zhang, Q.; Xiao, C. H.; Zhang, Y. F.; Cheng, Y. L. Ultradurable noncovalent cross-linked hydrogels with low hysteresis and robust elasticity for flexible electronics. Chem. Mater. 2022, 34, 3311–3322.

    Article  CAS  Google Scholar 

  51. Shi, R.; Sun, T. L.; Luo, F.; Nakajima, T.; Kurokawa, T.; Bin, Y. Z.; Rubinstein, M.; Gong, J. P. Elastic-plastic transformation of polyelectrolyte complex hydrogels from chitosan and sodium hyaluronate. Macromolecules 2018, 51, 8887–8898.

    Article  CAS  Google Scholar 

  52. Halat, D. M.; Snyder, R. L.; Sundararaman, S.; Choo, Y.; Gao, K. W.; Hoffman, Z. J.; Abel, B. A.; Grundy, L. S.; Galluzzo, M. D.; Gordon, M. P. et al. Modifying Li+ and anion diffusivities in polyacetal electrolytes: A pulsed-field-gradient NMR study of ion self-diffusion. Chem. Mater. 2021, 33, 4915–4926.

    Article  CAS  Google Scholar 

  53. Li, G.; Zhang, J.; Huang, F.; Wu, S. Y.; Wang, C. H.; Peng, S. H. Transparent, stretchable, and high-performance triboelectric nanogenerator based on dehydration-free ionically conductive solid polymer electrode. Nano Energy 2021, 88, 106289.

    Article  CAS  Google Scholar 

  54. Dong, L.; Wang, M. X.; Wu, J. J.; Zhu, C. H.; Shi, J.; Morikawa, H. Deformable textile-structured triboelectric nanogenerator knitted with multifunctional sensing fibers for biomechanical energy harvesting. Adv. Fiber Mater. 2022, 4, 1486–1499.

    Article  CAS  Google Scholar 

  55. Ji, B.; Zhou, Q.; Lei, M.; Ding, S.; Song, Q.; Gao, Y. B.; Li, S. B.; Xu, Y.; Zhou, Y. N.; Zhou, B. P. Gradient architecture-enabled capacitive tactile sensor with high sensitivity and ultrabroad linearity range. Small 2021, 17, 2103312.

    Article  CAS  Google Scholar 

  56. Guan, F. Y.; Han, Z. L.; Jin, M. T.; Wu, Z. T.; Chen, Y.; Chen, S. Y.; Wang, H. P. Durable and flexible bio-assembled RGO-BC/BC bilayer electrodes for pressure sensing. Adv. Fiber Mater. 2021, 3, 128–137.

    Article  CAS  Google Scholar 

  57. Thouti, E.; Nagaraju, A.; Chandran, A.; Prakash, P. V. B. S. S.; Shivanarayanamurthy, P.; Lal, B.; Kumar, P.; Kothari, P.; Panwar, D. Tunable flexible capacitive pressure sensors using arrangement of polydimethylsiloxane micro-pyramids for bio-signal monitoring. Sens. Actuators A Phys. 2020, 314, 112251.

    Article  CAS  Google Scholar 

  58. Wang, H. Z.; Li, Z.; Liu, Z. Y.; Fu, J. K.; Shan, T. Y.; Yang, X. Y.; Lei, Q. Y.; Yang, Y. J.; Li, D. H. Flexible capacitive pressure sensors for wearable electronics. J. Mater. Chem. C 2022, 10, 1594–1605.

    Article  CAS  Google Scholar 

  59. Zhang, D. C.; Xu, X. J.; Ji, S. M.; Wang, Z. S.; Liu, Z. B.; Shen, J. D.; Hu, R. Z.; Liu, J.; Zhu, M. Solvent-free method prepared a sandwich-like nanofibrous membrane-reinforced polymer electrolyte for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 21586–21595.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support from the National Natural Science Foundation of China (No. 52173274), the National Key Research and Development Project from Ministry of Science and Technology (No. 2021YFA1201603), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA16021101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Panpan Zhang or Xiong Pu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, P., Shao, Y. et al. Stretchable iontronics with robust interface bonding between dielectric and ion-conducting elastomers. Nano Res. 16, 11862–11870 (2023). https://doi.org/10.1007/s12274-023-5612-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5612-3

Keywords

Navigation