Skip to main content
Log in

Electroactive and antibacterial wound dressings based on Ti3C2Tx MXene/poly(ε-caprolactone)/gelatin coaxial electrospun nanofibrous membranes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Endogenous electric fields (EFs) are capable of regulating the behaviors of skin cells in wound healing. However, majority of current dressings are primarily engaged in the passive repair of defective tissue, as they lack the ability to actively respond to physiological electrical signals. In this work, a series of nanofibrous membranes (NFMs) were fabricated by coaxial electrospinning, combining the good mechanical properties of poly(ε-caprolactone) (PCL), the bioactivity of gelatin and the electroactivity of Ti3C2Tx MXene, as electroactive and antibacterial dressings for cutaneous wound healing. The obtained NFMs exhibited suitable mechanical properties and hydrophilicity, excellent electroactivity, antibacterial activity, and biocompatibility. Especially, Ti3C2Tx MXene/PCL/gelatin-6 (MPG-6, 6 wt.% of Ti3C2Tx MXene in sheath spinning liquids) showed the optimal conductivity and antibacterial activity. Excitingly, this scaffold significantly promoted the adhesion, proliferation, and migration of NIH 3T3 cells under the electrical stimulation (ES). The in vivo evaluation in a full-thickness wounds defect model demonstrated that the MPG-6 films significantly accelerated wound closure, increased granulation tissue formation, increased collagen deposition, and promoted wound vascularization. In summary, the versatile scaffold is expected to be an ideal candidate as wound dressings due to its ability to promote the transmission of physiological electrical signals and thus improved the therapeutic outcomes of wound regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otto, K. J.; Schmidt, C. E. Neuron-targeted electrical modulation. Science 2020, 367, 1303–1304.

    CAS  Google Scholar 

  2. Trivedi, D. P.; Hallock, K. J.; Bergethon, P. R. Electric fields caused by blood flow modulate vascular endothelial electrophysiology and nitric oxide production. Bioelectromagnetics 2013, 34, 22–30.

    CAS  Google Scholar 

  3. Ma, Y. X.; Yang, C.; Liang, Q.; He, Z. H.; Weng, W. J.; Lei, J.; Skudder-Hill, L.; Jiang, J. Y.; Feng, J. F. Direct current electric field coordinates the migration of BV2 microglia via ERK/GSK3β/Cofilin signaling pathway. Mol. Neurobiol. 2022, 59, 3665–3677.

    CAS  Google Scholar 

  4. Tai, G. P.; Reid, B.; Cao, L.; Zhao, M. Electrotaxis and wound healing: Experimental methods to study electric fields as a directional signal for cell migration. In Chemotaxis: Methods and Protocols. Jin, T.; Hereld, D., Eds.; Humana Press: Totowa, 2009; pp 77–97.

    Google Scholar 

  5. Cao, L.; Pu, J.; Zhao, M. GSK-3β is essential for physiological electric field-directed Golgi polarization and optimal electrotaxis. Cell. Mol. Life Sci. 2011, 68, 3081–3093.

    CAS  Google Scholar 

  6. Rim, N. G.; Shin, C. S.; Shin, H. Current approaches to electrospun nanofibers for tissue engineering. Biomed. Mater. 2013, 8, 014102.

    CAS  Google Scholar 

  7. Mo, X. M.; Xu, C. Y.; Kotaki, M.; Ramakrishna, S. Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 2004, 25, 1883–1890.

    CAS  Google Scholar 

  8. Zhang, X. D.; Li, L. F.; Ouyang, J.; Zhang, L. Q.; Xue, J. J.; Zhang, H.; Tao, W. Electroactive electrospun nanofibers for tissue engineering. Nano Today 2021, 39, 101196.

    CAS  Google Scholar 

  9. Shrestha, S.; Shrestha, B. K.; Kim, J. I.; Won Ko, S.; Park, C. H.; Kim, C. S. Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering. Carbon 2018, 136, 430–443.

    CAS  Google Scholar 

  10. Zhao, X.; Wu, H.; Guo, B. L.; Dong, R. N.; Qiu, Y. S.; Ma, P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34–47.

    CAS  Google Scholar 

  11. Fan, Z. J.; Liu, B.; Wang, J. Q.; Zhang, S. Y.; Lin, Q. Q.; Gong, P. W.; Ma, L. M.; Yang, S. R. A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing. Adv. Funct. Mater. 2014, 24, 3933–3943.

    CAS  Google Scholar 

  12. Barjasteh, M.; Dehnavi, S. M.; Ahmadi Seyedkhani, S.; Rahnamaee, S. Y.; Golizadeh, M. Improved biological activities of dual nanofibrous chitosan/bacterial cellulose wound dressing by a novel silver-based metal-organic framework. Surf. Interfaces 2023, 36, 102631.

    CAS  Google Scholar 

  13. Sun, M. C.; Chen, Y. F.; Liu, D.; Xu, X. L.; You, Y. C.; Lu, W.; Shi, Y. J.; Ren, M. Y.; Fan, Y. B.; Du, Y. Z. et al. Effective decolonization strategy for mupirocin-resistant Staphylococcus aureus by TPGS-modified mupirocin-silver complex. Mater. Today Bio 2023, 18, 100534.

    CAS  Google Scholar 

  14. Wang, S. Q.; Zhang, Y. L.; Sun, F. Y.; Xi, K. Y.; Sun, Z. W.; Zheng, X. Y.; Guo, F. Z.; Zhong, H. L.; Yang, M. M.; Shao, Y. T. et al. Catalase-like nanozymes combined with hydrogel to facilitate wound healing by improving the microenvironment of diabetic ulcers. Mater. Des. 2023, 225, 111557.

    CAS  Google Scholar 

  15. Huang, Y. Q.; Du, Z. Y.; Li, K.; Jing, W.; Wei, P. F.; Zhao, B.; Yu, Y. J.; Cai, Q.; Yang, X. P. ROS-scavenging electroactive polyphosphazene-based core-shell nanofibers for bone regeneration. Adv. Fiber Mater. 2022, 4, 894–907.

    CAS  Google Scholar 

  16. Levitt, A.; Seyedin, S.; Zhang, J. Z.; Wang, X. H.; Razal, J. M.; Dion, G.; Gogotsi, Y. Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small 2020, 16, 2002158.

    CAS  Google Scholar 

  17. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    CAS  Google Scholar 

  18. Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

    CAS  Google Scholar 

  19. Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    CAS  Google Scholar 

  20. Huang, K.; Li, Z. J.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124.

    CAS  Google Scholar 

  21. Zhang, J. Z.; Seyedin, S.; Qin, S.; Wang, Z. Y.; Moradi, S.; Yang, F. L.; Lynch, P. A.; Yang, W. R.; Liu, J. Q.; Wang, X. G. et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 2019, 15, 1804732.

    Google Scholar 

  22. Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

    CAS  Google Scholar 

  23. Zhang, X. B.; Shao, B. Y.; Guo, A. P.; Gao, Z.; Qin, Y.; Zhang, C.; Cui, F. M.; Yang, X. J. Improved electrochemical performance of CoOx-NiO/Ti3C2Tx MXene nanocomposites by atomic layer deposition towards high capacitance supercapacitors. J. Alloys Compd. 2021, 862, 158546.

    CAS  Google Scholar 

  24. Levitt, A.; Zhang, J. Z.; Dion, G.; Gogotsi, Y.; Razal, J. M. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 2020, 30, 2000739.

    CAS  Google Scholar 

  25. Al-Baadani, M. A.; Yie, K. H. R.; Al-Bishari, A. M.; Alshobi, B. A.; Zhou, Z. X.; Fang, K.; Dai, B. W.; Shen, Y. D.; Ma, J. F.; Liu, J. S. et al. Co-electrospinning polycaprolactone/gelatin membrane as a tunable drug delivery system for bone tissue regeneration. Mater. Des. 2021, 209, 109962.

    CAS  Google Scholar 

  26. Chinnappan, A.; Lee, J. K. Y.; Jayathilaka, W. A. D. M.; Ramakrishna, S. Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method. Int. J. Hydrogen Energ. 2018, 43, 721–729.

    CAS  Google Scholar 

  27. Zeng, W. W.; Cheng, N. M.; Liang, X.; Hu, H. F.; Luo, F. L.; Jin, J.; Li, Y. W. Electrospun polycaprolactone nanofibrous membranes loaded with baicalin for antibacterial wound dressing. Sci. Rep. 2022, 12, 10900.

    CAS  Google Scholar 

  28. Lowery, J. L.; Datta, N.; Rutledge, G. C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ε-caprolactone) fibrous mats. Biomaterials 2010, 31, 491–504.

    CAS  Google Scholar 

  29. Ghobeira, R.; Philips, C.; Liefooghe, L.; Verdonck, M.; Asadian, M.; Cools, P.; Declercq, H.; De Vos, W. H.; De Geyter, N.; Morent, R. Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Appl. Surf. Sci. 2019, 485, 204–221.

    CAS  Google Scholar 

  30. Zhao, H. J.; Deng, N. P.; Kang, W. M.; Cheng, B. W. Designing of multilevel-nanofibers-based organic-inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security. Chem. Eng. J. 2020, 390, 124571.

    CAS  Google Scholar 

  31. Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518–524.

    CAS  Google Scholar 

  32. Firestein, K. L.; von Treifeldt, J. E.; Kvashnin, D. G.; Fernando, J. F. S.; Zhang, C.; Kvashnin, A. G.; Podryabinkin, E. V.; Shapeev, A. V.; Siriwardena, D. P.; Sorokin, P. B. et al. Young’s modulus and tensile strength of Ti3C2 MXene nanosheets as revealed by in situ TEM probing, AFM nanomechanical mapping, and theoretical calculations. Nano Lett. 2020, 20, 5900–5908.

    CAS  Google Scholar 

  33. Woo, J. H.; Kim, N. H.; Kim, S. I.; Park, O. K.; Lee, J. H. Effects of the addition of boric acid on the physical properties of MXene/polyvinyl alcohol (PVA) nanocomposite. Compos. Part B:Eng. 2020, 199, 108205.

    CAS  Google Scholar 

  34. Liu, L. X.; Guo, R.; Gao, J.; Ding, Q.; Fan, Y. C.; Yu, J. Y. Mechanically and environmentally robust composite nanofibers with embedded MXene for wearable shielding of electromagnetic wave. Compos. Commun. 2022, 30, 101094.

    Google Scholar 

  35. Shami, Z.; Amininasab, S. M.; Shakeri, P. Structure-property relationships of nanosheeted 3D hierarchical roughness MgAl-layered double hydroxide branched to an electrospun porous nanomembrane: A superior oil-removing nanofabric. ACS Appl. Mater. Interfaces 2016, 8, 28964–28973.

    CAS  Google Scholar 

  36. Bhatta, T.; Maharjan, P.; Cho, H.; Park, C.; Yoon, S. H.; Sharma, S.; Salauddin, M.; Rahman, M. T.; Rana, S. M. S.; Park, J. Y. Highperformance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy 2021, 81, 105670.

    CAS  Google Scholar 

  37. Luo, R. Z.; Dai, J. Y.; Zhang, J. P.; Li, Z. Accelerated skin wound healing by electrical stimulation. Adv. Healthc. Mater. 2021, 10, 2100557.

    CAS  Google Scholar 

  38. Kotnik, T.; Miklavčič, D. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophysi. J. 2006, 90, 480–491.

    CAS  Google Scholar 

  39. Mao, L.; Hu, S. M.; Gao, Y. H.; Wang, L.; Zhao, W. W.; Fu, L. N.; Cheng, H. Y.; Xia, L.; Xie, S. X.; Ye, W. L. et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv. Healthc. Mater. 2020, 9, 2000872.

    CAS  Google Scholar 

  40. Hu, W. T.; Wei, X. L.; Zhu, L.; Yin, D.; Wei, A. M.; Bi, X. Y.; Liu, T.; Zhou, G. M.; Qiang, Y. H.; Sun, X. H. et al. Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator. Nano Energy 2019, 57, 600–607.

    CAS  Google Scholar 

  41. Dubey, A. K.; Gupta, S. D.; Basu, B. Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces. J. Biomed. Mater. Res. Part B:Appl. Biomater. 2011, 98B, 18–29.

    CAS  Google Scholar 

  42. Amani, H.; Arzaghi, H.; Bayandori, M.; Dezfuli, A. S.; Pazoki-Toroudi, H.; Shafiee, A.; Moradi, L. Controlling cell behavior through the design of biomaterial surfaces: A focus on surface modification techniques. Adv. Mater. Interfaces 2019, 6, 1900572.

    Google Scholar 

  43. Huang, R. K.; Chen, X.; Dong, Y. Q.; Zhang, X. C.; Wei, Y. Q.; Yang, Z. F.; Li, W. J.; Guo, Y. X.; Liu, J.; Yang, Z. et al. MXene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio Mater. 2020, 3, 2125–2131.

    CAS  Google Scholar 

  44. Price, J. M.; Prabhakaran, A.; West, C. M. L. Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 83–98.

    CAS  Google Scholar 

  45. Hanson, R. L.; Batchelor, E. Coordination of MAPK and p53 dynamics in the cellular responses to DNA damage and oxidative stress. Mol. Syst. Biol. 2022, 18, e11401.

    CAS  Google Scholar 

  46. Lei, H.; Fan, D. D. Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. Chem. Eng. J. 2021, 421, 129578.

    CAS  Google Scholar 

  47. Funk, R. H. W. Endogenous electric fields as guiding cue for cell migration. Front. Physiol. 2015, 6, 143.

    Google Scholar 

  48. Castellano, E.; Molina-Arcas, M.; Krygowska, A. A.; East, P.; Warne, P.; Nicol, A.; Downward, J. RAS signalling through PI3-kinase controls cell migration via modulation of Reelin expression. Nat. Commun. 2016, 7, 11245.

    CAS  Google Scholar 

  49. Sieg, D. J.; Hauck, C. R.; Ilic, D.; Klingbeil, C. K.; Schaefer, E.; Damsky, C. H.; Schlaepfer, D. D. FAK integrates growth-factor and integrin signals to promote cell migration. Nat. Cell Biol. 2000, 2, 249–256.

    CAS  Google Scholar 

  50. Paul, N. R.; Jacquemet, G.; Caswell, P. T. Endocytic trafficking of integrins in cell migration. Cur. Biol. 2015, 25, R1092–R1105.

    CAS  Google Scholar 

  51. Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

    CAS  Google Scholar 

  52. Chattopadhyay, S.; Raines, R. T. Collagen-based biomaterials for wound healing. Biopolymers 2014, 101, 821–833.

    CAS  Google Scholar 

  53. Keskin, Y.; Taştekin, N.; Kanter, M.; Top, H.; Özdemir, F.; Erboğa, M.; Taşpınar, Ö.; Süt, N. The effect of magnetic field therapy and electric stimulation on experimental burn healing. Turk. J. Phys. Med. Rehabil. 2019, 65, 352–360.

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Key Research and Development Program of Shaanxi (No. 2022SF-200), the Fund of Jiangsu Key Laboratory of Advanced Functional Polymers Design and Application in Soochow University (No. KJS2007), and the Undergraduate Training Programs of Shaanxi Province for Innovation and Entrepreneurship (No. S202210699534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Du, C., Zhang, M. et al. Electroactive and antibacterial wound dressings based on Ti3C2Tx MXene/poly(ε-caprolactone)/gelatin coaxial electrospun nanofibrous membranes. Nano Res. 16, 9672–9687 (2023). https://doi.org/10.1007/s12274-023-5527-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5527-z

Keywords

Navigation