Skip to main content
Log in

Electrospun Nanofibrous Materials for Wound Healing

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Wound dressing materials which are capable of meeting the demands of accelerating wound closure and promoting wound healing process have being highly desired. Electrospun nanofibrous materials show great application potentials for wound healing owing to relatively large surface area, better mimicry of native extracellular matrix, adjustable waterproofness and breathability, and programmable drug delivery process. In this review article, we begin with a discussion of wound healing process and current commercial wound dressing materials. Then, we emphasize on electrospun nanofibrous materials for wound dressing, covering the efforts for controlling fiber alignment and morphology, constructing 3D scaffolds, developing waterproof-breathable membrane, governing drug delivery performance, and regulating stem cell behavior. Finally, we finish with challenges and future prospects of electrospun nanofibrous materials for wound dressings.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xia G, Zhai D, Sun Y, et al. Preparation of a novel asymmetric wettable chitosan-based sponge and its role in promoting chronic wound healing. Carbohydr Polym.2020;227:115296.

    CAS  Google Scholar 

  2. Zahedi P, Rezaeian I, Ranaei-Siadat SO, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol.2009;10:77.

    Google Scholar 

  3. Weiser TG, Haynes AB, Molina G, et al. Size and distribution of the global volume of surgery in 2012. Bull World Health Organ.2016;94:201.

    Google Scholar 

  4. Del Gaudio P, Amante C, Civale R, et al. In situ gelling alginate-pectin blend particles loaded with Ac2-26: a new weapon to improve wound care armamentarium. Carbohydr Polym.2020;227:115305.

    Google Scholar 

  5. Tantiwatcharothai S, Prachayawarakorn J. Property improvement of antibacterial wound dressing from basil seed (O. basilicum L.) mucilage-ZnO nanocomposite by borax crosslinking. Carbohydr Polym.2020;227:115360.

    Google Scholar 

  6. Zam W, Harfouch R, Ali R, Mousa A, et al. Natural extracts and honey based impregnated gauze wound dressing preparation and in vitro antibacterial efficacy. Res J Pharmacogn Phytochem.2018;10:1.

    Google Scholar 

  7. Ambekar RS, Kandasubramanian B. Advancements in nanofibers for wound dressing: a review. Eur Polym J.2019;117:304.

    CAS  Google Scholar 

  8. Xie H, Chen X, Shen X, et al. Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int J Biol Macromol.2018;107:93.

    CAS  Google Scholar 

  9. Jin SG, Kim KS, Yousaf AM, et al. Mechanical properties and in vivo healing evaluation of a novel centella asiatica-loaded hydrocolloid wound dressing. Int J Pharm.2015;490:240.

    CAS  Google Scholar 

  10. Kamoun EA, Kenawy ES, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res.2017;8:217.

    CAS  Google Scholar 

  11. Kim H, Kawazoe T, Han DW, et al. Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice. Wound Repair Regen.2008;16:714.

    Google Scholar 

  12. Murakami K, Aoki H, Nakamura S, et al. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials.2010;31:83.

    CAS  Google Scholar 

  13. Pawar HV, Tetteh J, Boateng JS. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B Biointerfaces.2013;102:102.

    CAS  Google Scholar 

  14. Qu J, Zhao X, Liang Y, et al. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem Eng J.2019;362:548.

    CAS  Google Scholar 

  15. Dalisson B, Barralet J. Bioinorganics and wound healing. Adv Healthc Mater.2019;8:1900764.

    Google Scholar 

  16. Chen S, Boda SK, Batra SK, et al. Emerging roles of electrospun nanofibers in cancer research. Adv Healthc Mater.2018;7:1701024.

    Google Scholar 

  17. Xie J, Li X, Xia Y. Putting electrospun nanofibers to work for biomedical research. Macromol Rapid Commun.2008;29:1775.

    CAS  Google Scholar 

  18. Lu X, Wang C, Wei Y. One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small.2009;5:2349.

    CAS  Google Scholar 

  19. Raguvaran R, Manuja BK, Chopra M, et al. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int J Biol Macromol.2017;96:185.

    CAS  Google Scholar 

  20. Liang M, Wang F, Liu M, et al. N-Halamine functionalized electrospun poly(vinyl alcohol-co-ethylene) nanofibrous membranes with rechargeable antibacterial activity for bioprotective applications. Adv Fiber Mater.2019;1:126.

    Google Scholar 

  21. Rezvani Ghomi E, Khalili S, Nouri Khorasani S, et al. Wound dressings: current advances and future directions. J Appl Polym Sci.2019;136:47738.

    Google Scholar 

  22. Chen S, Li R, Li X, et al. Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev.2018;132:188.

    CAS  Google Scholar 

  23. Wang L, Qiu Y, Lv H, et al. 3D Superelastic scaffolds constructed from flexible inorganic nanofibers with self-fitting capability and tailorable gradient for bone regeneration. Adv Funct Mater.2019;29:1901407.

    Google Scholar 

  24. Nudelman R, Alhmoud H, Delalat B, et al. Jellyfish-based smart wound dressing devices containing in situ synthesized antibacterial nanoparticles. Adv Funct Mater.2019;29:1902783.

    Google Scholar 

  25. Lalani R, Liu L. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules.1853;2012:13.

    Google Scholar 

  26. Jin J, Limburg S, Joshi SK, et al. Peripheral nerve repair in rats using composite hydrogel-filled aligned nanofiber conduits with incorporated nerve growth factor. Tissue Eng Part A.2013;19:2138.

    CAS  Google Scholar 

  27. Kawata M, Azuma K, Izawa H, et al. Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material. Carbohydr Polym.2016;136:964.

    CAS  Google Scholar 

  28. Yang GZ, Li JJ, Yu DG, et al. Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomater.2017;53:233.

    CAS  Google Scholar 

  29. Blersch J, Francisco V, Rebelo C, et al. A light-triggerable nanoparticle library for the controlled release of non-coding RNAs. Angew Chem Int Ed.1985;2020:59.

    Google Scholar 

  30. Ovington LG. Advances in wound dressings. Clin Dermatol.2007;25:33.

    Google Scholar 

  31. Li X, Chen Z, Zhang H, et al. Aligned scaffolds with biomolecular gradients for regenerative medicine. Polymers (Basel).2019;11:341.

    Google Scholar 

  32. Derakhshandeh H, Kashaf SS, Aghabaglou F, et al. Smart bandages: the future of wound care. Trends Biotechnol.2018;36:1259.

    CAS  Google Scholar 

  33. Gacanin J, Hedrich J, Sieste S, et al. Autonomous ultrafast self-healing hydrogels by pH-responsive functional nanofiber gelators as cell matrices. Adv Mater.2019;31:1805044.

    Google Scholar 

  34. Song F, Wang XL, Wang YZ. Fabrication of novel thermo-responsive electrospun nanofibrous mats and their application in bioseparation. Eur Polym J.1885;2011:47.

    Google Scholar 

  35. Semenza GL. Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol.2010;30:648.

    CAS  Google Scholar 

  36. Schreml S, Szeimies RM, Prantl L, et al. Oxygen in acute and chronic wound healing. Br J Dermatol.2010;163:257.

    CAS  Google Scholar 

  37. Dyson M, Young SR, Hart J, et al. Comparison of the effects of moist and dry conditions on the process of angiogenesis during dermal repair. J Investig Dermatol.1992;99:729.

    CAS  Google Scholar 

  38. Cutting KF. Wound exudate: composition and functions. Br J Community Nurs.2003;8:4.

    Google Scholar 

  39. Lim SH, Mao HQ. Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev.2009;61:1084.

    CAS  Google Scholar 

  40. Singer AJ, Clark RAF. Cutaneous wound healing. New Engl J Med.1999;341:738.

    CAS  Google Scholar 

  41. Zhang H, Lou S, Williams GR, et al. A systematic study of captopril-loaded polyester fiber mats prepared by electrospinning. Int J Pharm.2012;439:100.

    CAS  Google Scholar 

  42. Hickman DA, Pawlowski CL, Sekhon UDS, et al. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv Mater.2018;30:1700859.

    Google Scholar 

  43. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol.2007;127:514.

    CAS  Google Scholar 

  44. Merrell JG, McLaughlin SW, Tie L, et al. Curcumin-loaded poly(epsilon-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol.2009;36:1149.

    CAS  Google Scholar 

  45. Young A, McNaught CE. The physiology of wound healing. Surgery (Oxford).2011;29:475.

    Google Scholar 

  46. Caley MP, Martins VL, O’Toole EA. Metalloproteinases and wound healing. Adv Wound Care.2015;4:225.

    Google Scholar 

  47. Thomas S. Hydrocolloid dressings in the management of acute wounds: a review of the literature. Int Wound J.2008;5:602.

    Google Scholar 

  48. Hu Y, Zhang Z, Li Y, et al. Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol Rapid Commun.2018;39:1800069.

    Google Scholar 

  49. Airiani S, Braunstein RE, Kazim M, et al. Tegaderm transparent dressing (3M) for the treatment of chronic exposure keratopathy. Ophthalmic Plast Reconstr Surg.2003;19:75.

    Google Scholar 

  50. Goodhead A. Clinical efficacy of comfeel plus transparent dressing. Br J Nurs.2002;11:286.

    Google Scholar 

  51. Skorkowska-Telichowska K, Czemplik M, Kulma A, et al. The local treatment and available dressings designed for chronic wounds. J Am Acad Dermatol.2013;68:117.

    Google Scholar 

  52. Powers JG, Morton LM, Phillips TJ. Dressings for chronic wounds. Dermatol Ther.2013;26:197.

    Google Scholar 

  53. Li D, Ye Y, Li D, et al. Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-PEG composite hydrogel fibers for wound dressings. Carbohydr Polym.2016;137:508.

    CAS  Google Scholar 

  54. Ge J, Wang F, Yin X, et al. Polybenzoxazine-functionalized melamine sponges with enhanced selective capillarity for efficient oil spill cleanup. ACS Appl Mater Interfaces.2018;10:40274.

    CAS  Google Scholar 

  55. Sun J, Perry SL, Schiffman JD. Electrospinning nanofibers from chitosan/hyaluronic acid complex coacervates. Biomacromolecules.2019;20:4191.

    CAS  Google Scholar 

  56. Singh R, Khan S, Basu SM, et al. Fabrication, characterization, and biological evaluation of airbrushed gelatin nanofibers. ACS Appl Biol Mater.2019;2:5340.

    CAS  Google Scholar 

  57. Dodero A, Scarfi S, Pozzolini M, et al. Alginate-based electrospun membranes containing ZnO nanoparticles as potential wound healing patches: biological, mechanical, and physicochemical characterization. ACS Appl Mater Interfaces.2020;12:3371.

    CAS  Google Scholar 

  58. Evrova O, Bürgissera GM, Ebnöthera C, et al. Elastic and surgeon friendly electrospun tubes delivering PDGF-BB positively impact tendon rupture healing in a rabbit Achilles tendon model. Biomaterials.2020;232:119722.

    CAS  Google Scholar 

  59. Li Y, Xiao Z, Zhou Y, et al. Controlling the multiscale network structure of fibers to stimulate wound matrix rebuilding by fibroblast differentiation. ACS Appl Mater Interfaces.2019;11:28377.

    CAS  Google Scholar 

  60. Memic A, Abudula T, Mohammed HS, et al. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl Bio Mater.2019;2:952.

    CAS  Google Scholar 

  61. Wali A, Gorain M, Inamdar S, et al. In vivo wound healing performance of halloysite clay and gentamicin-incorporated cellulose ether-PVA electrospun nanofiber mats. ACS Appl Biol Mater.2019;2:4324.

    CAS  Google Scholar 

  62. Li W, Yu Q, Yao H, et al. Superhydrophobic hierarchical fiber/bead composite membranes for efficient treatment of burns. Acta Biomater.2019;92:60.

    CAS  Google Scholar 

  63. Pires F, Santos JF, Bitoque D, et al. Polycaprolactone/gelatin nanofiber membranes containing EGCG loaded liposomes and their potential use for skin regeneration. ACS Appl Biol Mater.2019;2:4790.

    CAS  Google Scholar 

  64. Bakhsheshi-Rad HR, Ismail AF, Aziz M, et al. Antibacterial activity and in vivo wound healing evaluation of polycaprolactone-gelatin methacryloyl-cephalexin electrospun nanofibrous. Mater Lett.2019;256:126618.

    CAS  Google Scholar 

  65. Carter K, Lee HJ, Na KS, et al. Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta Biomater.2019;99:247.

    Google Scholar 

  66. Miao DY, Huang Z, Wang X, et al. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small.2018;14:1801527.

    Google Scholar 

  67. Yin Z, Chen X, Chen JL, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials.2010;31:2163.

    CAS  Google Scholar 

  68. Xu H, Li H, Ke Q, et al. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering. ACS Appl Mater Interfaces.2015;7:8706.

    CAS  Google Scholar 

  69. Lv F, Wang J, Xu P, et al. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater.2017;60:128.

    CAS  Google Scholar 

  70. Kurpinski KT, Stephenson JT, Janairo RR, et al. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials.2010;31:3536.

    CAS  Google Scholar 

  71. Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers for regenerative medicine. Adv Healthc Mater.2012;1:10.

    CAS  Google Scholar 

  72. Kim JI, Kim JY, Park CH. Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Sci Rep-UK.2018;8:1.

    Google Scholar 

  73. Xie J, Matthew MR, Wilson ZR, et al. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano.2010;4:5027.

    CAS  Google Scholar 

  74. Xu H, Lv F, Zhang Y, et al. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing. Nanoscale.2015;7:18446.

    CAS  Google Scholar 

  75. Ma B, Xie J, Jiang J, et al. Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as microskin grafts for skin regeneration. Biomaterials.2014;35:630.

    CAS  Google Scholar 

  76. Moura LI, Dias AM, Leal EC, et al. Chitosan-based dressings loaded with neurotensin–an efficient strategy to improve early diabetic wound healing. Acta Biomater.2014;10:843.

    CAS  Google Scholar 

  77. Ulubayram K, Cakar AN, Korkusuz P, et al. EGF containing gelatin-based wound dressings. Biomaterials.2001;22:1345.

    CAS  Google Scholar 

  78. Zhou T, Wang N, Xue Y, et al. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B Biointerfaces.2016;143:415.

    CAS  Google Scholar 

  79. Chouhan D, Chakraborty B, Nandi SK, et al. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater.2017;48:157.

    CAS  Google Scholar 

  80. Zhao X, Sun X, Yildirimer L, et al. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater.2017;49:66.

    CAS  Google Scholar 

  81. Jiang J, Carlson MA, Teusink MJ, et al. Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique. ACS Biomater Sci Eng.2015;1:991.

    CAS  Google Scholar 

  82. Zhang K, Bai X, Yuan Z, et al. Layered nanofiber sponge with an improved capacity for promoting blood coagulation and wound healing. Biomaterials.2019;204:70.

    CAS  Google Scholar 

  83. Kim MS, Son J, Lee H, et al. Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process. Curr Appl Phys.2014;14:1.

    Google Scholar 

  84. Chen H, Peng Y, Wu S, et al. Electrospun 3D fibrous scaffolds for chronic wound repair. Materials (Basel).2016;9:272.

    Google Scholar 

  85. Annabi N, Tamayol A, Uquillas JA, et al. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater.2014;26:85.

    CAS  Google Scholar 

  86. Wang L, Qiu Y, Guo Y, et al. Smart, elastic, and nanofiber-based 3D scaffolds with self-deploying capability for osteoporotic bone regeneration. Nano Lett.2019;19:9112.

    CAS  Google Scholar 

  87. Si Y, Wang L, Wang X, et al. Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity. Adv Mater.2017;29:1700339.

    Google Scholar 

  88. Fu Q, Si Y, Duan C, et al. Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation. Adv Funct Mater.2019;29:1808234.

    Google Scholar 

  89. Si Y, Wang X, Yan C, et al. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv Mater.2016;28:9512.

    CAS  Google Scholar 

  90. Sheng J, Xu Y, Yu J, et al. Robust fluorine-Free superhydrophobic amino-silicone oil/SiO2 modification of electrospun polyacrylonitrile membranes for waterproof-breathable application. ACS Appl Mater Interfaces.2017;9:15139.

    CAS  Google Scholar 

  91. Cui H, Li Y, Zhao X, et al. Multilevel porous structured polyvinylidene fluoride/polyurethane fibrous membranes for ultrahigh waterproof and breathable application. Compos Commun.2017;6:63.

    Google Scholar 

  92. Yu X, Wu X, Si Y, et al. Waterproof and breathable electrospun nanofibrous membranes. Macromol Rapid Commun.2019;40:1800931.

    Google Scholar 

  93. Mao X, Chen Y, Si Y, et al. Novel fluorinated polyurethane decorated electrospun silica nanofibrous membranes exhibiting robust waterproof and breathable performances. RSC Adv.2013;3:7562.

    CAS  Google Scholar 

  94. Wang X, Ding B, Yu J, et al. Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today.2011;6:510.

    CAS  Google Scholar 

  95. Sheng J, Li Y, Wang X, et al. Thermal inter-fiber adhesion of the polyacrylonitrile/fluorinated polyurethane nanofibrous membranes with enhanced waterproof-breathable performance. Sep Purif Technol.2016;158:53.

    CAS  Google Scholar 

  96. Yu X, Li Y, Yin X, et al. Corncoblike, superhydrophobic, and phase-changeable nanofibers for intelligent thermoregulating and water-repellent fabrics. ACS Appl Mater Interfaces.2019;11:39324.

    CAS  Google Scholar 

  97. Li Y, Yang F, Yu J, Ding B. Hydrophobic fibrous membranes with tunable porous structure for equilibrium of breathable and waterproof performance. Adv Mater Interfaces.2016;3:1600516.

    Google Scholar 

  98. Zhao J, Zhu W, Wang X, et al. Environmentally benign modification of breathable nanofibrous membranes exhibiting superior waterproof and photocatalytic self-cleaning properties. Nanoscale Horiz.2019;4:867.

    CAS  Google Scholar 

  99. Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science.2011;333:712.

    CAS  Google Scholar 

  100. Tijing LD, Woo YC, Shim WG, et al. Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J Membr Sci.2016;502:158.

    CAS  Google Scholar 

  101. Zhao J, Li Y, Sheng J, et al. Environmentally friendly and breathable fluorinated polyurethane fibrous membranes exhibiting robust waterproof performance. ACS Appl Mater Interfaces.2017;9:29302.

    CAS  Google Scholar 

  102. Dong ZQ, Wang BJ, Ma XH, et al. FAS grafted electrospun poly(vinyl alcohol) nanofiber membranes with robust superhydrophobicity for membrane distillation. ACS Appl Mater Interfaces.2015;7:22652.

    CAS  Google Scholar 

  103. Zhao J, Wang X, Liu L, et al. Human skin-like, robust waterproof, and highly breathable fibrous membranes with short perfluorobutyl chains for eco-friendly protective textiles. ACS Appl Mater Interfaces.2018;10:30887.

    CAS  Google Scholar 

  104. Mishra H, Schrader AM, Lee DW, et al. Time-dependent wetting behavior of PDMS surfaces with bioinspired, hierarchical structures. ACS Appl Mater Interfaces.2016;8:8168.

    CAS  Google Scholar 

  105. Turco A, Malitesta C, Barillaro G, et al. A magnetic and highly reusable macroporous superhydrophobic/superoleophilic PDMS/MWNT nanocomposite for oil sorption from water. J Mater Chem A.******2015;3:17685.

    CAS  Google Scholar 

  106. Sheng J, Zhang M, Xu Y, et al. Tailoring water-resistant and breathable performance of polyacrylonitrile nanofibrous membranes modified by polydimethylsiloxane. ACS Appl Mater Interfaces.2016;8:27218.

    CAS  Google Scholar 

  107. Stucki M, Kellenberger CR, Loepfe M, et al. Internal polymer pore functionalization through coated particle templating affords fluorine-free green functional textiles. J Mater Chem A.2016;4:15197.

    CAS  Google Scholar 

  108. Guo Y, Zhou W, Wang L, et al. Stretchable PDMS embedded fibrous membranes based on an ethanol solvent system for waterproof and breathable applications. ACS Appl Bio Mater.2019;2:5949.

    CAS  Google Scholar 

  109. Yu DG, Yu JH, Chen L, et al. Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr Polym.2012;90:1016.

    CAS  Google Scholar 

  110. Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release.2015;220:584.

    CAS  Google Scholar 

  111. Unnithan AR, Gnanasekaran G, Sathishkumar Y, et al. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym.2014;102:884.

    CAS  Google Scholar 

  112. Bertoncelj V, Pelipenko J, Kristl J, et al. Development and bioevaluation of nanofibers with blood-derived growth factors for dermal wound healing. Eur J Pharm Biopharm.2014;88:64.

    CAS  Google Scholar 

  113. Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, et al. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Mater Sci Eng C.2016;58:521.

    CAS  Google Scholar 

  114. Unnithan AR, Barakat NA, Pichiah PB, et al. Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym.2012;90:1786.

    CAS  Google Scholar 

  115. Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, et al. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(epsilon-caprolactone) electrospun nanofibers. Mater Sci Eng C Mater Biol Appl.2016;69:1183.

    Google Scholar 

  116. Rieger KA, Birch NP, Schiffman JD. Designing electrospun nanofiber mats to promote wound healing-a review. J Mater Chem B.2013;1:1600516.

    Google Scholar 

  117. Falde EJ, Freedman JD, Herrera VL, et al. Layered superhydrophobic meshes for controlled drug release. J Control Release.2015;214:23.

    CAS  Google Scholar 

  118. Park WH, Jeong L, Yoo DI, et al. Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer.2004;45:7151.

    CAS  Google Scholar 

  119. Abdelgawad AM, Hudson SM, Rojas OJ. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym.2014;100:166.

    CAS  Google Scholar 

  120. Petlin DG, Amarah AA, Tverdokhlebov SI, et al. A fiber distribution model for predicting drug release rates. J Control Release.2017;258:218.

    CAS  Google Scholar 

  121. Hu C, Cui W. Hierarchical structure of electrospun composite fibers for long-term controlled drug release carriers. Adv Healthc Mater.2012;1:809.

    CAS  Google Scholar 

  122. Tsekova PB, Spasova MG, Manolova NE, et al. Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater Sci Eng C.2017;73:206.

    CAS  Google Scholar 

  123. Saraf A, Baggett LS, Raphael RM, et al. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Release.2010;143:95.

    CAS  Google Scholar 

  124. He M, Xue J, Geng H, et al. Fibrous guided tissue regeneration membrane loaded with anti-inflammatory agent prepared by coaxial electrospinning for the purpose of controlled release. Appl Surf Sci.2015;335:121.

    CAS  Google Scholar 

  125. Han D, Steckl AJ. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Interfaces.2013;5:8241.

    CAS  Google Scholar 

  126. Lai HJ, Kuan CH, Wu HC, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater.2014;10:4156.

    CAS  Google Scholar 

  127. Okuda T, Tominaga K, Kidoaki S. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J Control Release.2010;143:258.

    CAS  Google Scholar 

  128. Zhang Z, Liu S, Qi Y, et al. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J Control Release.2016;235:125.

    CAS  Google Scholar 

  129. Abdalla I, Xu J, Wang D, et al. Investigation of pH-responsive block glycopolymers with different structures for the delivery of doxorubicin. RSC Adv.1814;2019:9.

    Google Scholar 

  130. Song F, Wang XL, Wang YZ. Poly (N-isopropylacrylamide)/poly(ethylene oxide) blend nanofibrous scaffolds: thermo-responsive carrier for controlled drug release. Colloids Surf B Biointerfaces.2011;88:749.

    CAS  Google Scholar 

  131. Sershen SR, Mensing GA, Ng M, et al. Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Adv Mater.2005;17:1366.

    CAS  Google Scholar 

  132. Ru X, Shi W, Huang X, et al. Synthesis of polypyrrole nanowire network with high adenosine triphosphate release efficiency. Electrochim Acta.2011;56:9887.

    CAS  Google Scholar 

  133. Jin G, Prabhakaran MP, Ramakrishna S. Photosensitive and biomimetic core-shell nanofibrous scaffolds as wound dressing. Photochem Photobiol.2014;90:673.

    CAS  Google Scholar 

  134. Wadhwa R, Lagenaur CF, Cui XT. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release.2006;110:531.

    CAS  Google Scholar 

  135. Han D, Steckl AJ. Selective pH-responsive core-sheath nanofiber membranes for chem/bio/med applications: targeted delivery of functional molecules. ACS Appl Mater Interfaces.2017;9:42653.

    CAS  Google Scholar 

  136. Li H, Liu K, Williams GR, et al. Dual temperature and pH responsive nanofiber formulations prepared by electrospinning. Colloids Surf B Biointerfaces.2018;171:142.

    Google Scholar 

  137. Naseri-Nosar M, Farzamfar S, Sahrapeyma H, et al. Cerium oxide nanoparticle-containing poly(epsilon-caprolactone)/gelatin electrospun film as a potential wound dressing material: in vitro and in vivo evaluation. Mater Sci Eng C.2017;81:366.

    CAS  Google Scholar 

  138. Okuzaki H, Kobayashi K, Yan H. Thermo-responsive nanofiber mats. Macromolecules.2009;42:5916.

    CAS  Google Scholar 

  139. Otero TF, Martínez JG. Physical and chemical awareness from sensing polymeric artificial muscles. Experiments and modelling. Prog Polym Sci.2015;44:62.

    CAS  Google Scholar 

  140. Puiggalí-Jou A, Cejudo A, del Valle LJ, et al. Smart drug delivery from electrospun fibers through electroresponsive polymeric nanoparticles. ACS Appl Biol Mater.2018;1:1594.

    Google Scholar 

  141. Nkemcho O, Irena P, Marjana TC, et al. Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci.2015;16:25476.

    Google Scholar 

  142. Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev.2015;24:1635.

    CAS  Google Scholar 

  143. Walker MR, Patel KK, Stappenbeck TS. The stem cell niche. J Pathol.2010;217:169.

    Google Scholar 

  144. Blanpain C, Lowry WE, Geoghegan A, et al. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell.2004;118:647.

    Google Scholar 

  145. Konala VBR, Mamidi MK, Bhonde R, et al. The current landscape of mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration. Cytotherapy.2015;18:13.

    Google Scholar 

  146. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant.2016;25:829.

    Google Scholar 

  147. Ranganath SH, Levy O, Inamdar MS, et al. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell.2012;10:244.

    CAS  Google Scholar 

  148. Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, et al. Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev Rep.2018;14:484.

    CAS  Google Scholar 

  149. Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care.2014;3:647.

    Google Scholar 

  150. Hamdan S, Pastar I, Drakulich S, et al. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci.2017;3:163.

    CAS  Google Scholar 

  151. Zhang J, Zheng T, Alarcin E, et al. Porous electrospun fibers with self-sealing functionality: an enabling strategy for trapping biomacromolecules. Small.2017;13:1701949.

    Google Scholar 

  152. Tartarini D, Mele E. Adult stem cell therapies for wound healing: biomaterials and computational models. Front Bioeng Biotechnol.2015;3:206.

    Google Scholar 

  153. Li X, Li M, Sun J, et al. Radially aligned electrospun fibers with continuous gradient of SDF1alpha for the guidance of neural stem cells. Small.2016;12:5009.

    CAS  Google Scholar 

  154. Fong EL, Chan CK, Goodman SB. Stem cell homing in musculoskeletal injury. Biomaterials.2011;32:395.

    CAS  Google Scholar 

  155. Su N, Gao PL, Wang K, et al. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction. Biomaterials.2017;141:74.

    CAS  Google Scholar 

  156. Gholipourmalekabadi M, Seifalian AM, Urbanska AM, et al. 3D protein-based bilayer artificial skin for the guided scarless healing of third-degree burn wounds in vivo. Biomacromolecules.2018;19:2409.

    CAS  Google Scholar 

  157. Zhang Q, Hwang JW, Oh JH, et al. Effects of the fibrous topography-mediated macrophage phenotype transition on the recruitment of mesenchymal stem cells: an in vivo study. Biomaterials.2017;149:77.

    CAS  Google Scholar 

  158. Zhang Y, Chang M, Bao F, et al. Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. Nanoscale.2019;11:6315.

    CAS  Google Scholar 

  159. Hu Q, Chen Q, Gu Z. Advances in transformable drug delivery systems. Biomaterials.2018;178:546.

    CAS  Google Scholar 

  160. Davoodi P, Lee LY, Xu Q, et al. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev.2018;132:104.

    CAS  Google Scholar 

  161. Feng Q, Zhang Y, Zhang W, et al. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater.2016;38:129.

    CAS  Google Scholar 

  162. Mostafalu P, Tamayol A, Rahimi R, et al. Smart bandage for monitoring and treatment of chronic wounds. Small.2018;14:1703509.

    Google Scholar 

  163. Won JE, Lee YS, Park JH, et al. Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing. Biomaterials.2020;227:119548.

    CAS  Google Scholar 

  164. Yoon DS, Lee Y, Ryu HA, et al. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomater.2016;38:59.

    CAS  Google Scholar 

  165. Pedde RD, Mirani B, Navaei A, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater.2017;29:1606061.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81771338), Natural Science Foundation of Shanghai (19ZR1470500), the Science and Technology Commission of Shanghai Municipality (18511109500), and the Fundamental Research Funds for the Central Universities (223201900081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoran Li or Bin Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Zheng, Y., Zhang, K. et al. Electrospun Nanofibrous Materials for Wound Healing. Adv. Fiber Mater. 2, 212–227 (2020). https://doi.org/10.1007/s42765-020-00034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00034-y

Keywords

Navigation