Skip to main content

Advertisement

Log in

Novel electrospun polyvinyl alcohol/chitosan/polycaprolactone-diltiazem hydrochloride nanocomposite membranes for wound dressing applications

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The importance of managing wound care lies in the skin’s vital function within the human body. The fabrication of effective materials for biomedical applications presents a significant challenge. The implementation of the electrospinning technique offers a potential solution for the development of biological scaffolds. In the current study, the electrospinning technique was employed to effectively integrate diltiazem hydrochloride (DTH) into a polyvinyl alcohol/chitosan/polycaprolactone (PVA/CS/PCL) membrane at a concentration of 10% (w/w). The physicochemical and cellular characteristics of the nanocomposite material were subsequently evaluated in vitro. The outcome of the morphological analysis demonstrated that despite the decrease in nanofiber diameter resulting from the inclusion of DTH, the wound dressing remains in compliance with the necessary standards. The incorporation of PCL resulted in a noteworthy augmentation in tensile strength (1.58 ± 0.45 MPa), a reduction in degradation rate, could significantly control the rate of drug release, exhibiting nearly a 50% decrease. Moreover, DTH exhibited promise in the field of wound healing as it amplified wettability and mechanical properties, and fosters the viability, proliferation, and adherence of the cultured fibroblasts. Using this technique, an increased proportion of DTH can be successfully incorporated into the electrospun PVA/CS/PCL nanofibers without any adverse effects. The data obtained from the study suggests that a scaffold containing 10% w/w DTH-enriched PVA/CS/PCL possesses remarkable cytocompatibility and wound healing properties, thus presenting a promising candidate for future biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.S. Karizmeh et al., An in vitro and in vivo study of PCL/chitosan electrospun mat on polyurethane/propolis foam as a bilayer wound dressing. Biomater. Adv. 135, 112667 (2022)

    Google Scholar 

  2. C. Lindholm, R. Searle, Wound management for the 21st century: combining effectiveness and efficiency. Int. Wound J. 13, 5–15 (2016)

    PubMed  PubMed Central  Google Scholar 

  3. V. Jayarama Reddy et al., Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen. 21(1), 1–16 (2013)

    PubMed  Google Scholar 

  4. D. Sundaramurthi et al., Electrospun nanofibers as scaffolds for skin tissue engineering. Polymer Reviews 54(2), 348–376 (2014)

    CAS  Google Scholar 

  5. Y. Liang et al., Antibacterial biomaterials for skin wound dressing. Asian J. Pharm. Sci. 17(3), 353–384 (2022)

    PubMed  PubMed Central  Google Scholar 

  6. M.S. Mirbagheri et al., Chitosan-based electrospun nanofibers for diabetic foot ulcer management; recent advances. Carbohydr. Polym. 313, 120512 (2023)

  7. M. Acosta et al., Electrospun conducting polymers: approaches and applications. Materials 15(24), 8820 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Al-Abduljabbar, I. Farooq, Electrospun polymer nanofibers: processing, properties, and applications. Polymers 15(1), 65 (2022)

    PubMed  PubMed Central  Google Scholar 

  9. A. Haddad-Mashadrizeh et al., Effects of chitosan-glycerol phosphate hydrogel on the maintenance and homing of hAd-MSCs after xenotransplantation into the rat liver. Emergent Materials. 5, 519–528 (2022)

  10. X. Liu et al., Electrospun medicated nanofibers for wound healing. Membranes 11(10), 770 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. R. Ahmed et al., Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int. J. Biol. Macromol. 120, 385–393 (2018)

    CAS  PubMed  Google Scholar 

  12. Z. Shahravi et al., Multifunctional electrospun polyvinyl alcohol/gellan gum/polycaprolactone nanofibrous membrane containing pentoxifylline to accelerate wound healing. Polym. Bull 80(2), 2217–2237 (2023)

    CAS  Google Scholar 

  13. S. Fathollahipour et al., Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system. J. Biomed. Mater. Res. A 103(12), 3852–3862 (2015)

    CAS  PubMed  Google Scholar 

  14. M. Koosha, H. Mirzadeh, Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mater. Res. A 103(9), 3081–3093 (2015)

    CAS  PubMed  Google Scholar 

  15. M. Kouchak et al., Chitosan and polyvinyl alcohol composite films containing nitrofurazone: preparation and evaluation. Iran. J. Basic Med. Sci. 17(1), 14 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. D. Sundaramurthi et al., Electrospun nanostructured chitosan–poly (vinyl alcohol) scaffolds: a biomimetic extracellular matrix as dermal substitute. Biomed. Mater. 7(4), 045005 (2012)

    PubMed  Google Scholar 

  17. S. Nazari et al., Fabrication and characterization of 3D nanostructured polycaprolactone-gelatin/nanohydroxyapatite-nanoclay scaffolds for bone tissue regeneration. J. Polym. Environ. 1–17 (2023)

  18. G.B. Heggannavar et al., Preparation of transferrin-conjugated poly-ε-caprolactone nanoparticles and delivery of paclitaxel to treat glioblastoma across blood–brain barrier. Emergent Mater. 2, 463–474 (2019)

    CAS  Google Scholar 

  19. R. Laurano et al., Wound dressing products: a translational investigation from the bench to the market. Eng. Regen. 3(2), 182–200 (2022)

    Google Scholar 

  20. D. Duscher et al., Optimization of transdermal deferoxamine leads to enhanced efficacy in healing skin wounds. J. Control. Release 308, 232–239 (2019)

    CAS  PubMed  Google Scholar 

  21. C. Li et al., Recent progress in drug delivery. Acta Pharm. Sin. B. 9(6), 1145–1162 (2019)

    PubMed  PubMed Central  Google Scholar 

  22. A. Teimouri et al., Drug-release assessment of compounded topical nifedipine and diltiazem in commonly used bases for wound healing. Int. J. Pharm. Compd. 24(6), 501–508 (2020)

    PubMed  Google Scholar 

  23. V. Catanzarite et al., Prenatal sonographic diagnosis of vasa previa: ultrasound findings and obstetric outcome in ten cases. Ultrasound Obstet. Gynecol. 18(2), 109–115 (2001)

    CAS  PubMed  Google Scholar 

  24. J. Knight et al., Topical diltiazem ointment in the treatment of chronic anal fissure. Br. J. Surg. 88(4), 553–556 (2001)

    CAS  PubMed  Google Scholar 

  25. M.M. Ibrahim et al., Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. Asian J. Pharm. Sci. 8(1), 48–57 (2013)

    CAS  Google Scholar 

  26. R. Seyedian et al., Diltiazem-loaded electrospun nanofibers as a new wound dressing: fabrication, characterization, and experimental wound healing. Pharm. Dev. Technol. 26(2), 167–180 (2021)

    CAS  PubMed  Google Scholar 

  27. C. Mouro et al., Emulsion electrospun fiber mats of PCL/PVA/chitosan and eugenol for wound dressing applications. Adv. Polym. Technol. 2019, 1–11 (2019)

    Google Scholar 

  28. N. Etemadi et al., Novel bilayer electrospun poly (caprolactone)/silk fibroin/strontium carbonate fibrous nanocomposite membrane for guided bone regeneration. J. Appl. Polym. Sci. 138(16), 50264 (2021)

    CAS  Google Scholar 

  29. S. Kamiloglu et al., Guidelines for cell viability assays. Food Frontiers 1(3), 332–349 (2020)

    Google Scholar 

  30. T. Bhunia et al., A transdermal diltiazem hydrochloride delivery device using multi-walled carbon nanotube/poly (vinyl alcohol) composites. Carbon 52, 305–315 (2013)

    CAS  Google Scholar 

  31. S. Torkaman et al., Modification of chitosan using amino acids for wound healing purposes: a review. Carbohydr. Polym. 258, 117675 (2021)

    CAS  PubMed  Google Scholar 

  32. R. Parhi, P. Suresh, Transdermal delivery of diltiazem HCl from matrix film: effect of penetration enhancers and study of antihypertensive activity in rabbit model. J. Adv. Res. 7(3), 539–550 (2016)

    CAS  PubMed  Google Scholar 

  33. G.S. Kilic et al., Impact of timing on wound dressing removal after caesarean delivery: a multicentre, randomised controlled trial. J. Obstet. Gynaecol. 41(3), 348–352 (2021)

    CAS  PubMed  Google Scholar 

  34. H. Adeli et al., Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 122, 238–254 (2019)

    CAS  PubMed  Google Scholar 

  35. A. Moeini et al., Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr. Polym. 233, 115839 (2020)

    CAS  PubMed  Google Scholar 

  36. N.J. Vickers, Animal communication: when I’m calling you, will you answer too? Curr. Biol. 27(14), R713–R715 (2017)

    CAS  PubMed  Google Scholar 

  37. Y.P. Afsharian, M. Rahimnejad, Bioactive electrospun scaffolds for wound healing applications: a comprehensive review. Polym. Test. 93, 106952 (2021)

    CAS  Google Scholar 

  38. W. Xue et al., Fabrication of electrospun PVDF nanofibers with higher content of polar β phase and smaller diameter by adding a small amount of dioctadecyl dimethyl ammonium chloride. Chinese J Polym Sci . 35, 992–1000 (2017)

    CAS  Google Scholar 

  39. G.-M. Lanno et al., Antibacterial porous electrospun fibers as skin scaffolds for wound healing applications. ACS Omega 5(46), 30011–30022 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. T. Li et al., State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications. Nanomaterials 12(5), 784 (2022)

    PubMed  PubMed Central  Google Scholar 

  41. A. Memic et al., Latest progress in electrospun nanofibers for wound healing applications. ACS Appl. Bio Mater. 2(3), 952–969 (2019)

    CAS  PubMed  Google Scholar 

  42. M. Wuriantika et al., Nanostructure, porosity and tensile strength of PVA/hydroxyapatite composite nanofiber for bone tissue engineering. Mater. Today: Proc. 44, 3203–3206 (2021)

    Google Scholar 

  43. S.R. Baker et al., Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Mater. Sci. Eng. C 59, 203–212 (2016)

    CAS  Google Scholar 

  44. S.-C. Wong et al., Effect of fiber diameter on tensile properties of electrospun poly (ɛ-caprolactone). Polymer 49(21), 4713–4722 (2008)

    CAS  Google Scholar 

  45. W. Pan et al., Influences of sodium and glycosaminoglycans on skin oedema and the potential for ulceration: a finite-element approach. R. Soc. Open Sci. 6(7), 182076 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. A.S. Ismail et al., Synthesis and characterization of hydrophilic chitosan-polyvinyl acetate blends and their sorption performance in binary methanol–water mixture. Egypt. J. Pet. 26(1), 17–22 (2017)

    Google Scholar 

  47. N. Akombaetwa et al., Applications of electrospun drug-eluting nanofibers in wound healing: current and future perspectives. Polymers 14(14), 2931 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. A. Luraghi et al., Electrospinning for drug delivery applications: a review. J. Control. Release 334, 463–484 (2021)

    CAS  PubMed  Google Scholar 

  49. K. Chen et al., Curcumin-loaded sandwich-like nanofibrous membrane prepared by electrospinning technology as wound dressing for accelerate wound healing. Mater. Sci. Eng. C 127, 112245 (2021)

    CAS  Google Scholar 

  50. A.Q. Ansari et al., Electrospun zein nanofibers as drug carriers for controlled delivery of levodopa in Parkinson syndrome. Mater. Res. Express 6(7), 075405 (2019)

    Google Scholar 

  51. K. Hey et al., Crosslinked fibrous collagen for use as a dermal implant: control of the cytotoxic effects of glutaraldehyde and dimethylsuberimidate. Biotechnol. Appl. Biochem. 12(1), 85–93 (1990)

    CAS  PubMed  Google Scholar 

  52. N. Reddy et al., Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 33(6), 362–369 (2015)

    CAS  PubMed  Google Scholar 

  53. W. Wang et al., Effect of vapor-phase glutaraldehyde crosslinking on electrospun starch fibers. Carbohydr. Polym. 140, 356–361 (2016)

    CAS  PubMed  Google Scholar 

  54. Y. Zheng et al., Inorganic-based biomaterials for rapid hemostasis and wound healing. Chem. Sci. 14, 29–53 (2023)

  55. M.F. García et al., Efficacy and safety of topical diltiazem 2% in anal fissure. Farmacia Hospitalaria (English Edition) 33(2), 80–88 (2009)

    Google Scholar 

  56. L.F. Zghair, Diltiazem gel 2% in treatment of acute fissure in ANO. The Pharma Innovation 5(11, Part A), 22 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Center for International Scientific Studies & Collaborations (CISSC), Ministry of Science Research and Technology of Iran (Grant No: 1402/328) and The Scientific and Technological Research Council of Türkiye (Grant No: 122N800), Türkiye. We also gratefully acknowledge the support of University of Isfahan and Isfahan University of Medical Sciences.

Funding

This work has been supported by the Center for International Scientific Studies & Collaborations (CISSC), Ministry of Science Research and Technology of Iran (Grant No: 4000589) and The Scientific and Technological Research Council of Türkiye (Grant No: 122N800), Türkiye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mehdikhani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etemadi, N., Mehdikhani, M., Huri, P.Y. et al. Novel electrospun polyvinyl alcohol/chitosan/polycaprolactone-diltiazem hydrochloride nanocomposite membranes for wound dressing applications. emergent mater. 7, 1103–1113 (2024). https://doi.org/10.1007/s42247-024-00626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-024-00626-z

Keywords

Navigation