Skip to main content
Log in

Fundamentals, preparation, and mechanism understanding of Li/Na/Mg-Sn alloy anodes for liquid and solid-state lithium batteries and beyond

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium metal is one of the most promising anodes to develop high energy density and safe energy storage devices due to its highest theoretical capacity (3860 mAh·g−1) and lowest electrochemical potential, demonstrating great potential to fulfill unprecedented demand from electronic gadgets, electric vehicles, and grid storage. Despite these good merits, lithium metal suffers from low Coulombic efficiency and dendritic growth, leading to internal short-circuiting of the cell and raising safety concerns about employing lithium metal as an anode. Recently, lithium-tin (Li-Sn) alloys, among other lithium alloys, have emerged as a potential alternative to lithium metal to efficiently suppress the lithium dendrite formation and reduce interfacial resistance for safer and longer-lasting lithium batteries. Accordingly, this work first reviews the fundamentals of Li-Sn alloys, and critically analyzes the failure mechanisms of pristine Li-metal anode and how Li-Sn alloys could overcome those challenges. The subsequent section examines various strategies to synthesize Li-Sn bulk and protection film alloys, followed by an evaluation of symmetric cell performance. Furthermore, the comparative electrochemical performance of full cells against different cathodes and solid electrolytes provides an overview of the present research. Subsequently, advanced characterization techniques were discussed to visualize lithium dendrites directly and quantify the mechanical performance of Li-Sn alloys. Last but not the least, the state-of-the-art progress of applying M-Sn (M = Na and Mg) beyond lithium batteries was summarized. In closing, this work identifies the critical challenges and provides future perspectives on Li-Sn alloy for lithium batteries and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  CAS  Google Scholar 

  2. Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sust. Energ. Rev. 2018, 90, 275–291.

    Article  CAS  Google Scholar 

  3. Sahu, B. K. Wind energy developments and policies in China: A short review. Renew. Sust. Energy Rev. 2018, 81, 1393–1405.

    Article  Google Scholar 

  4. Khare, V.; Nema, S.; Baredar, P. Solar-wind hybrid renewable energy system: A review. Renew. Sust. Energy Rev. 2016, 58, 23–33.

    Article  Google Scholar 

  5. Gong, J. L.; Li, C.; Wasielewski, M. R. Advances in solar energy conversion. Chem. Soc. Rev. 2019, 48, 1862–1864.

    Article  CAS  Google Scholar 

  6. Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069.

    Article  CAS  Google Scholar 

  7. Goodenough, J. B. Energy storage materials: A perspective. Energy Stor. Mater. 2015, 1, 158–161.

    Google Scholar 

  8. Palacín, M. R.; de Guibert, A. Why do batteries fail? Science 2016, 351, 1253292.

    Article  Google Scholar 

  9. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  10. Tang, Y. X.; Zhang, Y. Y.; Li, W. L.; Ma, B.; Chen, X. D. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 44, 5926–5940.

    Article  CAS  Google Scholar 

  11. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  12. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

    Article  CAS  Google Scholar 

  13. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2021, 414, 359–367.

    Article  Google Scholar 

  14. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

    Article  CAS  Google Scholar 

  15. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18, 461–472.

    Article  CAS  Google Scholar 

  16. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 1997, 144, 1609–1613.

    Article  CAS  Google Scholar 

  17. Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

    Article  Google Scholar 

  18. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  CAS  Google Scholar 

  19. Chen, Y. H.; Freunberger, S. A.; Peng, Z. Q.; Fontain, O.; Bruce, P. G. Charging a Li-O2 battery using a redox mediator. Nat. Chem. 2013, 5, 489–494.

    Article  Google Scholar 

  20. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    Article  CAS  Google Scholar 

  21. Zhai, P. Y.; Peng, H. J.; Cheng, X. B.; Zhu, L.; Huang, J. Q.; Zhu, W. C.; Zhang Q. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries. Energy Stor. Mater. 2017, 7, 56–63.

    Google Scholar 

  22. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    Article  CAS  Google Scholar 

  23. Kolosnitsyn, V. S.; Karaseva, E. V. Lithium-sulfur batteries: Problems and solutions. Russ. J. Electrochem. 2008, 44, 506–509.

    Article  CAS  Google Scholar 

  24. Kim, J.; Lee, D. J.; Jung, H. G.; Sun, Y. K.; Hassoun, J.; Scrosati, B. An advanced lithium-sulfur battery. Adv. Funct. Mater. 2013, 23, 1076–1080.

    Article  CAS  Google Scholar 

  25. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–1127.

    Article  CAS  Google Scholar 

  26. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    Article  CAS  Google Scholar 

  27. Brandt, K. Historical development of secondary lithium batteries. Solid State Ionics 1994, 69, 173–183.

    Article  CAS  Google Scholar 

  28. Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M. L.; Sommer, H.; Adelhelm, P.; Janek, J. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 2016, 8, 426–434.

    Article  CAS  Google Scholar 

  29. Gallagher, K. G.; Geobel, S.; Greszler, T.; Mathias, M.; Oelerich, W.; Eroglu, D.; Srinivasan, V. Quantifying the promise of lithiumair batteries for electric vehicles. Energy Environ. Sci. 2014, 7, 1555–1563.

    Article  CAS  Google Scholar 

  30. Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

    Article  CAS  Google Scholar 

  31. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

    Article  Google Scholar 

  32. Wang, D.; Zhang, W.; Zheng, W. T.; Cui, X. Q.; Rojo, T.; Zhang, Q. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy. Adv. Sci. 2017, 4, 1600168.

    Article  Google Scholar 

  33. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  34. Mukhopadhyay, A.; Jangid, M. K. Li metal battery, heal thyself. Science 2018, 359, 1463.

    Article  CAS  Google Scholar 

  35. Li, L.; Basu, S.; Wang, Y. P.; Chen, Z. Z.; Hundekar, P.; Wang, B. W.; Shi, J.; Shi, Y. F.; Narayanan, S.; Koratkar, N. Self-heating-induced healing of lithium dendrites. Science 2018, 359, 1513–1516.

    Article  CAS  Google Scholar 

  36. Ramakumar, S.; Deviannapoorani, C.; Dhivya, L.; Shankar, L. S.; Murugan, R. Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog. Mater. Sci. 2017, 88, 325–411.

    Article  CAS  Google Scholar 

  37. Amardeep; Kobi, S.; Mukhopadhyay, A. Mg-doping towards enhancing the composition-phase-structural stability of Li-La-zirconate based cubic garnet upon exposure to air. Scr. Mater. 2019, 162, 214–218.

    Article  CAS  Google Scholar 

  38. Sastre, J.; Futscher, M. H.; Pompizi, L.; Aribia, A.; Priebe, A.; Overbeck, J.; Stiefel, M.; Tiwari, A. N.; Romanyuk, Y. E. Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte. Commun. Mater. 2021, 2, 76.

    Article  CAS  Google Scholar 

  39. Kobi, S.; Amardeep; Vyas, A.; Bhargava, P.; Mukhopadhyay, A. Al and Mg co-doping towards development of air-stable and Li-ion conducting Li-La-zirconate based solid electrolyte exhibiting low electrode/electrolyte interfacial resistance. J. Electrochem. Soc. 2020, 167, 120519.

    Article  CAS  Google Scholar 

  40. Cao, D. X.; Sun, X.; Li, Q.; Natan, A.; Xiang, P. Y.; Zhu, H. L. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations. Matter 2020, 3, 57–94.

    Article  Google Scholar 

  41. Yu, Z. J.; Zhang, X. Y.; Fu, C. K.; Wang, H.; Chen, M.; Yin, G. P.; Huo, H.; Wang, J. J. Dendrites in solid-state batteries: Ion transport behavior, advanced characterization, and interface regulation. Adv. Energy Mater. 2021, 11, 2003250.

    Article  CAS  Google Scholar 

  42. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

    Article  CAS  Google Scholar 

  43. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

    Article  CAS  Google Scholar 

  44. Rehnlund, D.; Lindgren, F.; Böhme, S.; Nordh, T.; Zou, Y. M.; Pettersson, J.; Bexell, U.; Boman, M.; Edström, K.; Nyholm, L. Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries. Energy Environ. Sci. 2017, 10, 1350–1357.

    Article  CAS  Google Scholar 

  45. Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X. Q.; Nazar, L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 2, 17119.

    Article  CAS  Google Scholar 

  46. Gu, X. X.; Dong, J.; Lai, C. Li-containing alloys beneficial for stabilizing lithium anode: A review. Eng. Rep. 2021, 3, e12339.

    CAS  Google Scholar 

  47. Arrebola, J. C.; Caballero, A.; Gómez-Cámer, J. L.; Hernán, L.; Morales, J.; Sánchez, L. Combining 5 V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries. Electrochem. Commun. 2009, 11, 1061–1064.

    Article  CAS  Google Scholar 

  48. Kuksenko, S. P. Aluminum foil as anode material of lithium-ion batteries: Effect of electrolyte compositions on cycling parameters. Russ. J. Electrochem. 2013, 49, 67–75.

    Article  CAS  Google Scholar 

  49. Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1990, 45, 31–50.

    Article  Google Scholar 

  50. Amardeep, A.; Shende, R. C.; Gandharapu, P.; Wani, M. S.; Mukhopadhyay, A. Faceted antimony particles with interiors reinforced with reduced graphene oxide as high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 45296–45307.

    Article  CAS  Google Scholar 

  51. Kamali, A. R.; Fray, D. J. Tin-based materials as advanced anode materials for lithium ion batteries: A review. Rev. Adv. Mater. Sci. 2011, 27, 14–24.

    CAS  Google Scholar 

  52. Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24.

    Article  CAS  Google Scholar 

  53. Zhang, P. P.; Ma, Z. S.; Jiang, W. J.; Wang, Y.; Pan, Y.; Lu, C. S. Mechanical properties of Li-Sn alloys for Li-ion battery anodes: A first-principles perspective. AIP Adv. 2016, 6, 015107.

    Article  Google Scholar 

  54. Zhuang, H. F.; Zhao, P.; Li, G. D.; Xu, Y.; Jia, X. B. Li-LiAl alloy composite with memory effect as high-performance lithium metal anode. J. Power Sources 2020, 455, 227977.

    Article  CAS  Google Scholar 

  55. Lou, J.; Chen, K. H.; Yang, N. C.; Shuai, Y.; Zhu, C. J. Improved cycle stability of LiSn alloy anode for different electrolyte systems in lithium battery. Nanomaterials 2021, 11, 300.

    Article  CAS  Google Scholar 

  56. Il’ina, E. A.; Druzhinin, K. V.; Lyalin, E. D.; Plekhanov, M. S.; Talankin, I. I.; Antonov, B. D.; Pankratov, A. A. Li-In alloy: Preparation, properties, wettability of solid electrolytes based on Li7La3Zr2O12. J. Mater. Sci. 2022, 57, 1291–1301.

    Article  Google Scholar 

  57. Yan, K.; Lu, Z. D.; Lee, Y. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

    Article  CAS  Google Scholar 

  58. Xue, P.; Liu, S. R.; Shi, X. L.; Sun, C.; Lai, C.; Zhou, Y.; Sui, D.; Chen, Y. S.; Liang J. J. A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater. 2018, 30, 1804165.

    Article  Google Scholar 

  59. Zhu, M. Q.; Li, B.; Li, S. M.; Du, Z. G.; Gong, Y. J.; Yang, S. B. Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks. Adv. Energy Mater. 2018, 8, 1703505.

    Article  Google Scholar 

  60. Chen, C.; Yang, Y. F.; Shao, H. X. Enhancement of the lithium cycling capability using Li-Zn alloy substrate for lithium metal batteries. Electrochim. Acta 2014, 137, 476–483.

    Article  CAS  Google Scholar 

  61. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.

    Article  CAS  Google Scholar 

  62. Chen, T.; Kong, W. H.; Zhao, P. Y.; Lin, H. N.; Hu, Y.; Chen, R. P.; Yan, W.; Jin, Z. Dendrite-free and stable lithium metal anodes enabled by an antimony-based lithiophilic interphase. Chem. Mater. 2019, 31, 7565–7573.

    Article  CAS  Google Scholar 

  63. Weppner, W.; Huggins, R. A. Thermodynamic properties of the intermetallic systems lithium-antimony and lithium-bismuth. J. Electrochem. Soc. 1978, 125, 7–14.

    Article  CAS  Google Scholar 

  64. Sun, J.; Zeng, Q. C.; Lv, R. T.; Lv, W.; Yang, Q. H.; Amal, R.; Wang, D. W. A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode. Energy Storage Mater. 2018, 15, 209–217.

    Article  Google Scholar 

  65. Liu, Y.; Hudak, N. S.; Huber, D. L.; Limmer, S. J.; Sullivan, J. P.; Huang, J. Y. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. Nano Lett. 2011, 11, 4188–4194.

    Article  CAS  Google Scholar 

  66. Krauskopf, T.; Mogwitz, B.; Rosenbach, C.; Zeier, W. G.; Janek J. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 2019, 9, 1902568.

    Article  CAS  Google Scholar 

  67. Kong, L. L.; Wang, L.; Ni, Z. C.; Liu, S.; Li, G. R.; Gao, X. P. Lithium-magnesium alloy as a stable anode for lithium-sulfur battery. Adv. Funct. Mater. 2019, 29, 1808756.

    Article  Google Scholar 

  68. Besenhard, J. O.; Yang, J.; Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 1997, 68, 87–90.

    Article  CAS  Google Scholar 

  69. Gao, Y.; Yi, R.; Li, Y. C.; Song, J. X.; Chen, S. R.; Huang, Q. Q.; Mallouk, T. E.; Wang, D. H. General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes. J. Am. Chem. Soc. 2017, 139, 17359–17367.

    Article  CAS  Google Scholar 

  70. Iwamura, S.; Nishihara, H.; Ono, Y.; Morito, H.; Yamane, H.; Nara, H.; Osaka, T.; Kyotan, T. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries. Sci. Rep. 2015, 5, 8085.

    Article  CAS  Google Scholar 

  71. Gandharapu, P.; Mukhopadhyay, A. Deformation and stresses during alkali metal alloying/dealloying of Sn-based electrodes. Appl. Mech. Rev. 2022, 74, 060802.

    Article  Google Scholar 

  72. Ying, H. J.; Han, W. Q. Metallic Sn-based anode materials: Application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 2017, 4, 1700298.

    Article  Google Scholar 

  73. Mou, H. Y.; Xiao, W.; Miao, C.; Li, R.; Yu, L. M. Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: A review. Front. Chem. 2020, 8, 141.

    Article  CAS  Google Scholar 

  74. Smith, J. F.; Moser, Z. Thermodynamic properties of binary lithium systems—A review. J. Nucl. Mater. 1976, 59, 158–174.

    Article  CAS  Google Scholar 

  75. Sangster, J.; Bale, C. W. The Li-Sn (lithium-tin) system. J. Phase Equilib. 1998, 19, 70.

    CAS  Google Scholar 

  76. Yin, F. C.; Su, X. P.; Li, Z.; Wang, J. H. Thermodynamic assessment of the Li-Sn (lithium-tin) system. J. Alloys Compd. 2005, 393, 105–108.

    Article  CAS  Google Scholar 

  77. Gasior, W.; Moser, Z.; Zakulski, W. Thermodynamic studies and the phase diagram of the Li-Sn system. J. Non-Cryst. Solids 1996, 205–207, 379–382.

    Article  Google Scholar 

  78. Guidotti, R. A.; Masset, P. J. Thermally activated (“thermal”) battery technology: Part IV. Anode materials. J. Power Sources 2008, 183, 388–398.

    Article  CAS  Google Scholar 

  79. Wen, C. J.; Huggins, R. A. Thermodynamic study of the lithium-tin system. J. Electrochem. Soc. 1981, 128, 1181–1187.

    Article  CAS  Google Scholar 

  80. Redlich, O.; Kister, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948, 40, 345–348.

    Article  Google Scholar 

  81. Masing, G.; Tammann, G. Über das Verhalten von Lithium zu Natrium, Kalium, Zinn, Cadmium und Magnesium. Z. Anorg. Chem. 1910, 67, 183–199.

    Article  Google Scholar 

  82. Grube, G.; Meyer, E. Elektrische Leitfähigkeit und Zustandsdiagramm bei binären Legierungen. Z. Elektrochem. Angew. Phys. Chem. 1934, 40, 771–777.

    CAS  Google Scholar 

  83. Hirai, K.; Ichitsubo, T.; Uda, T.; Miyazaki, A.; Yagi, S.; Matsubara, E. Effects of volume strain due to Li-Sn compound formation on electrode potential in lithium-ion batteries. Acta Mater. 2008, 56, 1539–1545.

    Article  CAS  Google Scholar 

  84. Yu, C.; Liu, J. Y.; Lu, H.; Chen, J. M. Ab initio calculation of the properties and pressure induced transition of Sn. Solid State Commun. 2006, 140, 538–543.

    Article  CAS  Google Scholar 

  85. Kubaschewski, O.; Alcock, C. B. Metallurgical Thermochemistry, 5th ed.; Pergamon Press: Oxford, 1979.

    Google Scholar 

  86. Chou, C. Y.; Kim, H.; Hwang, G. S. A comparative first-principles study of the structure, energetics, and properties of Li-M (M = Si, Ge, Sn) alloys. J. Phys. Chem. C 2011, 115, 20018–20026.

    Article  CAS  Google Scholar 

  87. Zhang, P. P.; Ma, Z. S.; Wang, Y.; Zou, Y. L.; Lei, W. X.; Pan, Y.; Lu, C. S. A first principles study of the mechanical properties of Li-Sn alloys. RSC Adv. 2015, 5, 36022–36029.

    Article  CAS  Google Scholar 

  88. Hansen, D. A.; Chang, L. J. Crystal structure of Li2Sn5. Acta Cryst. 1969, B25, 2392–2395.

    Article  Google Scholar 

  89. Lupu, C.; Mao, J. G.; Rabalais, J. W.; Guloy, A. M.; Richardson, J. W. X-ray and neutron diffraction studies on “Li4.4Sn”. Inorg. Chem. 2003, 42, 3765–3771.

    Article  CAS  Google Scholar 

  90. Boukamp, B. A.; Lesh, G. C.; Huggin, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 1981, 128, 725–729.

    Article  CAS  Google Scholar 

  91. Gao, X. J.; Yang, X. F.; Jiang, M.; Zheng, M.; Zhao, Y.; Li, R. Y.; Ren, W. F.; Huang, H.; Sun, R. C.; Wang, J. T. et al. Fast ion transport in Li-rich alloy anode for high-energy-density all solid-state lithium metal batteries. Adv. Funct. Mater. 2022, 2209715.

  92. Wen, C. J.; Huggins, R. A. Chemical diffusion in intermediate phases in the lithium-tin system. J. Solid State Chem. 1980, 35, 376–384.

    Article  CAS  Google Scholar 

  93. Liu, B.; Zhang, J. G.; Xu, W. Advancing lithium metal batteries. Joule 2018, 2, 833–845.

    Article  CAS  Google Scholar 

  94. Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

    Article  CAS  Google Scholar 

  95. Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 2014, 13, 69–73.

    Article  CAS  Google Scholar 

  96. Yang, C. P.; Fu, K.; Zhang, Y.; Hitz, E.; Hu, L. B. Protected lithium-metal anodes in batteries: From liquid to solid. Adv. Mater. 2017, 29, 1701169.

    Article  Google Scholar 

  97. Li, B.; Wang, Y.; Yang, S. B. A material perspective of rechargeable metallic lithium anodes. Adv. Energy Mater. 2018, 8, 1702296.

    Article  Google Scholar 

  98. Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B 2000, 104, 12282–12291.

    Article  CAS  Google Scholar 

  99. Lin, D. C.; Liu, Y. Y.; Chen, W.; Zhou, G. M.; Liu, K.; Dunn, B.; Cui, Y. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 2017, 17, 3731–3737.

    Article  CAS  Google Scholar 

  100. Aryanfar, A.; Brooks, D. J.; Colussi, A. J.; Hoffmann, M. R. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Phys. Chem. Chem. Phys. 2014, 16, 24965–24970.

    Article  CAS  Google Scholar 

  101. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405–416.

    Article  CAS  Google Scholar 

  102. Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681.

    Article  CAS  Google Scholar 

  103. López, C. M.; Vaughey, J. T.; Dees, D. W. Morphological transitions on lithium metal anodes. J. Electrochem. Soc. 2009, 156, A726–A729.

    Article  Google Scholar 

  104. Lu, D. P.; Shao, Y. Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J. G.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 2015, 5, 1400993.

    Article  Google Scholar 

  105. Yang, C. P.; Xie, H.; Ping, W. W.; Fu, K.; Liu, B. Y.; Rao, J. C.; Dai, J. Q.; Wang, C. W.; Pastel, G.; Hu, L. B. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater. 2019, 31, 1804815.

    Article  Google Scholar 

  106. Zhu, Y. H.; Han, Y.; Wang, H.; Guo, Q. P.; Jiang, H. Z.; Sun, W. W.; Xie, W.; Zheng, C. M.; Xie, K. Effect of conductor materials in lithium composite anode on plating and stripping of lithium. Ionics 2020, 26, 3307–3314.

    Article  CAS  Google Scholar 

  107. Tu, Z. Y.; Choudhury, S.; Zachman, M. J.; Wei, S. Y.; Zhang, K. H.; Kourkoutis, L. F.; Archer, L. A. Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nat. Energy 2018, 3, 310–316.

    Article  CAS  Google Scholar 

  108. Zhao, J.; Zhou, G. M.; Yan, K.; Xie, J.; Li, Y. Z.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P. C.; Wang, J. Y. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 2017, 12, 993–999.

    Article  CAS  Google Scholar 

  109. Wang, C. W.; Xie, H.; Zhang, L.; Gong, Y. H.; Pastel, G.; Dai, J. Q.; Liu, B. Y.; Wachsman, E. D.; Hu, L. B. Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv. Energy Mater. 2018, 8, 1701963.

    Article  Google Scholar 

  110. Huang, Y. L.; Shao, B. W.; Han, F. D. Li alloy anodes for high-rate and high-areal-capacity solid-state batteries. J. Mater. Chem. A 2022, 10, 12350–12358.

    Article  CAS  Google Scholar 

  111. Jiang, Z. P.; Jin, L.; Han, Z. L.; Hu, W.; Zeng, Z. Q.; Sun, Y. L.; Xie, J. Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew. Chem. 2019, 131, 11496–11500.

    Google Scholar 

  112. Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y.; Xu, K.; Qiao, Q. Q. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 2020, 11, 93.

    Article  CAS  Google Scholar 

  113. Zhang, Z. B.; Luo, H.; Liu, Z. Y.; Wang, S. H.; Zhou, X. F.; Liu, Z. P. A chemical lithiation induced Li4.4Sn lithiophilic layer for anode-free lithium metal batteries. J. Mater. Chem. A 2022, 10, 9670–9679.

    Article  CAS  Google Scholar 

  114. Choudhury, S.; Tu, Z. Y.; Stalin, S.; Vu, D.; Fawole, K.; Gunceler, D.; Sundararaman, R.; Archer, L. A. Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem., Int. Ed. 2017, 56, 13070–13077.

    Article  CAS  Google Scholar 

  115. Xu, Y.; Zhao, S. Y.; Zhou, G. M.; Chen, W.; Zhou, F.; Rong, Z.; Wu, Y.; Li, J.; Guo, J. H.; Zhang, Y. G. Solubility-dependent protective effects of binary alloys for lithium anode. ACS Appl. Energy Mater. 2020, 3, 2278–2284.

    Article  CAS  Google Scholar 

  116. Touja, J.; Louvain, N.; Stievano, L.; Monconduit, L.; Berthelot, R. An overview on protecting metal anodes with alloy-type coating. Batteries Supercaps 2021, 4, 1252–1266.

    Article  CAS  Google Scholar 

  117. Xia, S. X.; Zhang, X.; Liang, C.; Yu, Y.; Liu, W. Stabilized lithium metal anode by an efficient coating for high-performance Li-S batteries. Energy Storage Mater. 2020, 24, 329–335.

    Article  Google Scholar 

  118. Li, S. H.; Wang, C.; Yu, J. M.; Han, Y. Y.; Lu, Z. D. Understanding the role of conductive polymer in thermal lithiation and battery performance of Li-Sn alloy anode. Energy Storage Mater. 2019, 20, 7–13.

    Article  Google Scholar 

  119. Zhang, Y.; Wang, C. W.; Pastel, G.; Kuang, Y. D.; Xie, H.; Li, Y. J.; Liu, B. Y.; Luo, W.; Chen, C. J.; Hu, L. B. 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 2018, 8, 1800635.

    Article  Google Scholar 

  120. Xu, Q. S.; Yang, X. F.; Rao, M. M.; Lin, D. C.; Yan, K.; Du, R. A.; Xu, J. T.; Zhang, Y. G.; Ye, D. Q.; Yang, S. H. et al. High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework. Energy Storage Mater. 2020, 26, 73–82.

    Article  Google Scholar 

  121. Han, Z. Y.; Zhang, C.; Lin, Q. W.; Zhang, Y. B.; Deng, Y. Q.; Han, J. W.; Wu, D. C.; Kang, F. Y.; Yang, Q. H.; Lv, W. A protective layer for lithium metal anode: Why and how. Small Methods 2021, 5, 2001035.

    Article  CAS  Google Scholar 

  122. Liao, K. M.; Wu, S. C.; Mu, X. W.; Lu, Q.; Han, M.; He, P.; Shao, Z. P.; Zhou, H. S. Developing a “water-defendable” and “dendrite-free” lithium-metal anode using a simple and promising GeCl4 pretreatment method. Adv. Mater. 2018, 30, 1705711.

    Article  Google Scholar 

  123. Wan, M. T.; Kang, S. J.; Wang, L.; Lee, H. W.; Zheng, G. W.; Cui, Y.; Sun, Y. M. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 2020, 11, 829.

    Article  CAS  Google Scholar 

  124. Sun, B.; Lang, J. L.; Liu, K.; Hussain, N.; Fang, M. H.; Wu, H. Promoting a highly stable lithium metal anode by superficial alloying with an ultrathin indium sheet. Chem. Commun. 2019, 55, 1592–1995.

    Article  CAS  Google Scholar 

  125. Ma, Y. T.; Wang, L. L.; Fu, S. Y.; Luo, R.; Qu, W. J.; Hu, X.; Chen, R. J.; Wu, F.; Li, L. In situ formation of a Li-Sn alloy protected layer for inducing lateral growth of dendrites. J. Mater. Chem. A 2020, 8, 23574–23579.

    Article  CAS  Google Scholar 

  126. Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 1999, 81–82, 13–19.

    Article  Google Scholar 

  127. Hiratani, M.; Miyauchi, K.; Kudo, T. Effect of a lithium alloy layer inserted between a lithium anode and a solid electrolyte. Solid State Ionics 1988, 28–30, 1406–1410.

    Article  Google Scholar 

  128. Ikeda, K.; Terada, S.; Mandai, T.; Ueno, K.; Dokko, K.; Watanabe, M. Lithium-tin alloy/sulfur battery with a solvate ionic liquid electrolyte. Electrochemistry 2015, 83, 914–917.

    Article  CAS  Google Scholar 

  129. Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J. W.; Ueno, K.; Seki, S.; Serizawa, N. et al. Solvate ionic liquid electrolyte for Li-S batteries. J. Electrochem. Soc. 2013, 160, A1304–A1310.

    Article  CAS  Google Scholar 

  130. Ma, M. Y.; Lu, Y.; Yan, Z. H.; Chen, J. In situ synthesis of a bismuth layer on a sodium metal anode for fast interfacial transport in sodium-oxygen batteries. Batteries Supercaps 2019, 2, 663–667.

    Article  CAS  Google Scholar 

  131. Wang, J. W.; Fan, F. F.; Liu, Y.; Jungjohann, K. L.; Lee, S. W.; Mao, S. X.; Liu, X. H.; Zhu, T. Structural evolution and pulverization of tin nanoparticles during lithiation-delithiation cycling. J. Electrochem. Soc. 2014, 161, F3019–F3024.

    Article  CAS  Google Scholar 

  132. Li, J. C.; Yang, F. Q.; Ye, J.; Cheng, Y. T. Whisker formation on a thin film tin lithium-ion battery anode. J. Power Sources 2011, 196, 1474–1477.

    Article  CAS  Google Scholar 

  133. Wang, C. S.; Appleby, A. J.; Little, F. E. Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes. J. Power Sources 2001, 93, 174–185.

    Article  CAS  Google Scholar 

  134. Zheng, X. Y.; Fu, H. Y.; Hu, C. C.; Xu, H.; Huang, Y.; Wen, J. Y.; Sun, H. B.; Luo, W.; Huang, Y. H. Toward a stable sodium metal anode in carbonate electrolyte: A compact, inorganic alloy interface. J. Phys. Chem. Lett. 2019, 10, 707–714.

    Article  CAS  Google Scholar 

  135. Kumar, V.; Eng, A. Y. S.; Wang, Y.; Nguyen, D. T.; Ng, M. F.; Seh, Z. W. An artificial metal-alloy interphase for high-rate and long-life sodium-sulfur batteries. Energy Storage Mater. 2020, 29, 1–8.

    Article  Google Scholar 

  136. Chen, Q. W.; He, H.; Hou, Z.; Zhuang, W. M.; Zhang, T. X.; Sun, Z. Z.; Huang, L. M. Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes. J. Mater. Chem. A 2020, 8, 16232–16237.

    Article  CAS  Google Scholar 

  137. Singh, N.; Arthur, T. S.; Ling, C.; Matsui, M.; Mizuno, F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 2013, 49, 149–151.

    Article  CAS  Google Scholar 

  138. Lv, R. J.; Guan, X. Z.; Zhang, J. H.; Xia, Y. Y.; Luo, J. Y. Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase. Natl. Sci. Rev. 2020, 7, 333–341.

    Article  CAS  Google Scholar 

  139. Ramireddy, T.; Kali, R.; Jangid, M. K.; Srihari, V.; Poswal, H. K.; Mukhopadhyay, A. Insights into electrochemical behavior, phase evolution and stability of Sn upon K-alloying/de-alloying via in situ studies. J. Electrochem. Soc. 2017, 164, A2360–A2367.

    Article  CAS  Google Scholar 

  140. Jangid, M. K.; Sonia, F. J.; Kali, R.; Ananthoju, B.; Mukhopadhyay, A. Insights into the effects of multi-layered graphene as buffer/interlayer for a-Si during lithiation/delithiation. Carbon 2017, 111, 602–616.

    Article  CAS  Google Scholar 

  141. Sun, F.; Zhou, D.; He, X.; Osenberg, M.; Dong, K.; Chen, L. B.; Mei, S. L.; Hilger, A.; Markötter, H.; Lu, Y. et al. Morphological reversibility of modified Li-based anodes for next-generation batteries. ACS Energy Lett. 2020, 5, 152–161.

    Article  CAS  Google Scholar 

  142. Ye, M. H.; Jin, X. T.; Nan, X. X.; Gao, J.; Qu, L. T. Paraffin wax protecting 3D non-dendritic lithium for backside-plated lithium metal anode. Energy Storage Mater. 2020, 24, 153–159.

    Article  Google Scholar 

  143. Leng, J.; Liang, H. M.; Wang, H. Y.; Xiao, Z. Q.; Wang, S. T.; Zhang, Z. T.; Tang, Z. L. A facile and low-cost wet-chemistry artificial interface engineering for garnet-based solid-state Li metal batteries. Nano Energy 2022, 101, 107603.

    Article  CAS  Google Scholar 

  144. Kepler, K. D.; Vaughey, J. T.; Thackeray, M. M. LixCu6Sn5 (0 < x < 13): An intermetallic insertion electrode for rechargeable lithium batteries. Electrochem. Solid-State Lett. 1999, 2, 307–309.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Mitacs Accelerate, Canada Foundation for Innovation (CFI), B.C. Knowledge Development Fund (BCKDF), Fenix Advanced Materials, and the University of British Columbia (UBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amardeep, A., Freschi, D.J., Wang, J. et al. Fundamentals, preparation, and mechanism understanding of Li/Na/Mg-Sn alloy anodes for liquid and solid-state lithium batteries and beyond. Nano Res. 16, 8191–8218 (2023). https://doi.org/10.1007/s12274-023-5448-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5448-x

Keywords

Navigation