Skip to main content
Log in

Gadolinium-doped mesoporous tungsten oxides: Rational synthesis, gas sensing performance, and mechanism investigation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a typical family of volatile toxic compounds, benzene derivatives are massive emission in industrial production and the automobile field, causing serious threat to human and environment. The reliable and convenient detection of low concentration benzene derivatives based on intelligent gas sensor is urgent and of great significance for environmental protection. Herein, through heteroatomic doping engineering, rare-earth gadolinium (Gd) doped mesoporous WO3 with uniform mesopores (15.7–18.1 nm), tunable high specific surface area (52–55 m2·g−1), and customized crystalline pore walls, was designed and utilized to fabricate highly sensitive gas sensors toward benzene derivatives, such as ethylbenzene. Thanks to the high-density oxygen vacancies (OV) and significantly increased defects (W5+) produced by Gd atoms doping into the lattice of WO3 octahedron, Gd-doped mesoporous WO3 exhibited excellent ethylbenzene sensing performance, including high response (237 vs. 50 ppm), rapid response—recovery dynamic (13 s/25 s vs. 50 ppm), and extremely low theoretical detection limit of 24 ppb. The in-situ diffuse reflectance infrared Fourier transform and gas chromatograph-mass spectrometry results revealed the gas sensing process underwent a catalytic oxidation conversion of ethylbenzene into alcohol species, benzaldehyde, acetophenone, and carboxylate species along with the resistance change of the Gd-doped mesoporous WO3 based sensor. Moreover, a portable smart gas sensing module was fabricated and demonstrated for real-time detecting ethylbenzene, which provided new ideas to design heteroatom doped mesoporous materials for intelligent sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, W. Y.; Jiang, X. F.; Lai, S. N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 2020, 11, 1302.

    CAS  Google Scholar 

  2. Fedorov, F. S.; Solomatin, M. A.; Uhlemann, M.; Oswald, S.; Kolosov, D. A.; Morozov, A.; Varezhnikov, A. S.; Ivanov, M. A.; Grebenko, A. K.; Sommer, M. et al. Quasi-2D Co3O4 nanoflakes as an efficient gas sensor versus alcohol VOCs. J. Mater. Chem. A 2020, 8, 7214–7228.

    CAS  Google Scholar 

  3. He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. P. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568.

    CAS  Google Scholar 

  4. Wang, Z. L.; Liu, K.; Chang, X. M.; Qi, Y. Y.; Shang, C. D.; Liu, T. H.; Liu, J.; Ding, L. P.; Fang, Y. Highly sensitive and discriminative detection of BTEX in the vapor phase: A film-based fluorescent approach. ACS Appl. Mater. Interfaces 2018, 10, 35647–35655.

    CAS  Google Scholar 

  5. Solomatin, M. A.; Glukhova, O. E.; Fedorov, F. S.; Sommer, M.; Shunaev, V. V.; Varezhnikov, A. S.; Nasibulin, A. G.; Ushakov, N. M.; Sysoev, V. V. The UV effect on the chemiresistive response of ZnO nanostructures to isopropanol and benzene at ppm concentrations in mixture with dry and wet air. Chemosensors 2021, 9, 181.

    CAS  Google Scholar 

  6. Kou, D. H.; Ma, W.; Zhang, S. F.; Tang, B. T. Copolymer-based photonic crystal sensor for discriminative detection of liquid benzene, toluene, ethylbenzene, and xylene. ACS Appl. Polym. Mater. 2020, 2, 2–11.

    CAS  Google Scholar 

  7. WHO Regional Office for Europe. WHO Guidelines for Indoor Air Quality: Selected Pollutants; WHO Regional Office for Europe: Copenhagen, 2010.

    Google Scholar 

  8. Pastor-Belda, M.; Viñas, P.; Campillo, N.; Hernández-Córdoba, M. Headspace sorptive extraction coupled to gas chromatography-mass spectrometry for the determination of benzene, toluene, ethylbenzene and xylenes in finger paints. Microchem. J. 2019, 145, 406–411.

    CAS  Google Scholar 

  9. Bahrami, A.; Ghamari, F.; Yamini, Y.; Shahna, F. G.; Koolivand, A. Ion-pair-based hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography for the simultaneous determination of urinary benzene, toluene, and styrene metabolites. J. Sep. Sci. 2018, 41, 501–508.

    CAS  Google Scholar 

  10. Anbia, M.; Irannejad, S. Modified SBA-15 mesoporous silica as a novel fiber coating in solid-phase microextraction and determination of BTEX compounds in water samples using gas chromatography-flame ionization detection. Anal. Methods 2013, 5, 1596–1603.

    CAS  Google Scholar 

  11. Ren, F. M.; Gao, L. P.; Yuan, Y. W.; Zhang, Y.; Alqrni, A.; Al-Dossary, O. M.; Xu, J. Q. Enhanced BTEX gas-sensing performance of CuO/SnO2 composite. Sens. Actuators B 2016, 223, 914–920.

    CAS  Google Scholar 

  12. Zhang, D.; Fan, Y.; Li, G. J.; Ma, Z. H.; Wang, X. H.; Cheng, Z. X.; Xu, J. Q. Highly sensitive BTEX sensors based on hexagonal WO3 nanosheets. Sens. Actuators B 2019, 293, 23–30.

    CAS  Google Scholar 

  13. Wang, D.; Yin, Y.; Xu, P. C.; Wang, F.; Wang, P.; Xu, J. C.; Wang, X. Y.; Li, X. X. The catalytic-induced sensing effect of triangular CeO2 nanoflakes for enhanced BTEX vapor detection with conventional ZnO gas sensors. J. Mater. Chem. A 2020, 8, 11188–11194.

    CAS  Google Scholar 

  14. Cao, Z. M.; Ge, Y. Z.; Wang, W.; Sheng, J. P.; Zhang, Z. J.; Li, J. Y.; Sun, Y. J.; Dong F. Chemical discrimination of benzene series and molecular recognition of the sensing process over Ti-doped Co3O4. ACS Sens. 2022, 7, 1757–1765.

    CAS  Google Scholar 

  15. Gounder Thangamani, G.; Khadheer Pasha, S. K. Hydrothermal synthesis of copper(II) oxide-nanoparticles with highly enhanced BTEX gas sensing performance using chemiresistive sensor. Chemosphere 2021, 277, 130237.

    CAS  Google Scholar 

  16. Huang, Z. F.; Song, J. J.; Pan, L.; Zhang, X. W.; Wang, L.; Zou, J. J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 2015, 27, 5309–5327.

    CAS  Google Scholar 

  17. Zhu, Y. H.; Zhao, Y.; Ma, J. H.; Cheng, X. W.; Xie, J.; Xu, P. C.; Liu, H. Q.; Liu, H. P.; Zhang, H. J.; Wu, M. H. et al. Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J. Am. Chem. Soc. 2017, 139, 10365–10373.

    CAS  Google Scholar 

  18. Xu, H. Y.; Gao, J.; Li, M. H.; Zhao, Y. Y.; Zhang, M.; Zhao, T.; Wang, L. J.; Jiang, W.; Zhu, G. J.; Qian, X. Y. et al. Mesoporous WO3 nanofibers with crystalline framework for high-performance acetone sensing. Front. Chem. 2019, 7, 266.

    CAS  Google Scholar 

  19. Ma, J. H.; Li, Y. Y.; Zhou, X. R.; Yang, X. Y.; Alharthi, F. A.; Alghamdi, A. A.; Cheng, X. W.; Deng, Y. H. Au nanoparticles decorated mesoporous SiO2-WO3 hybrid materials with improved pore connectivity for ultratrace ethanol detection at low operating temperature. Small 2020, 16, 2004772.

    CAS  Google Scholar 

  20. Wang, Y. L.; Zhang, B.; Liu, J.; Yang, Q. Y.; Cui, X. B.; Gao, Y.; Chuai, X. H.; Liu, F. M.; Sun, P.; Liang, X. S. et al. Au-loaded mesoporous WO3: Preparation and n-butanol sensing performances. Sens. Actuators B 2016, 236, 67–76.

    CAS  Google Scholar 

  21. Wang, Y. R.; Liu, B.; Xiao, S. H.; Wang, X. H.; Sun, L. M.; Li, H.; Xie, W. Y.; Li, Q. H.; Zhang, Q.; Wang, T. H. Low-temperature H2S detection with hierarchical Cr-doped WO3 microspheres. ACS Appl. Mater. Interfaces 2016, 8, 9674–9683.

    CAS  Google Scholar 

  22. Malik, R.; Tomer, V. K.; Chaudhary, V.; Dahiya, M. S.; Nehra, S. P.; Rana, P. S.; Duhan, S. Ordered mesoporous In-(TiO2/WO3) nanohybrid: An ultrasensitive n-butanol sensor. Sens. Actuators B 2017, 239, 364–373.

    CAS  Google Scholar 

  23. Zhang, Z. Y.; Haq, M.; Wen, Z.; Ye, Z. Z.; Zhu, L. P. Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe. Appl. Surf. Sci. 2018, 434, 891–897.

    CAS  Google Scholar 

  24. Duraisami, M. S.; Anburaj, D. B.; Parasuraman, K. Fabrication of room temperature operated ultra high sensitive gas sensor based on mesoporous Ni doped WO3 nanoparticles. Nanosyst. Phys. Chem. Math. 2021, 12, 291–302.

    CAS  Google Scholar 

  25. Wang, M. D.; Li, Y. Y.; Yao, B. H.; Zhai, K. H.; Li, Z. J.; Yao, H. C. Synthesis of three-dimensionally ordered macro/mesoporous C-doped WO3 materials: Effect of template sizes on gas sensing properties. Sens. Actuators B 2019, 288, 656–666.

    CAS  Google Scholar 

  26. Ren, Y.; Xie, W. H.; Li, Y. Y.; Cui, Y. Y.; Zeng, C.; Yuan, K. P.; Wu, L. M.; Deng, Y. H. Dynamic coassembly of amphiphilic block copolymer and polyoxometalates in dual solvent systems: An efficient approach to heteroatom-doped semiconductor metal oxides with controllable nanostructures. ACS Cent. Sci. 2022, 8, 1196–1208.

    CAS  Google Scholar 

  27. Wang, Y. L.; Cui, X. B.; Yang, Q. Y.; Liu, J.; Gao, Y.; Sun, P.; Lu, G. Y. Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens. Actuators B 2016, 225, 544–552.

    CAS  Google Scholar 

  28. Ma, J. H.; Li, Y. Y.; Li, J. C.; Yang, X. Y.; Ren, Y.; Alghamdi, A. A.; Song, G. X.; Yuan, K. P.; Deng, Y. H. Rationally designed dual-mesoporous transition metal oxides/noble metal nanocomposites for fabrication of gas sensors in real-time detection of 3-hydroxy-2-butanone biomarker. Adv. Funct. Mater. 2022, 32, 2107439.

    CAS  Google Scholar 

  29. Ren, Y.; Xie, W. H.; Li, Y. Y.; Ma, J. H.; Li, J. C.; Liu, Y.; Zou, Y. D.; Deng, Y. H. Noble metal nanoparticles decorated metal oxide semiconducting nanowire arrays interwoven into 3D mesoporous superstructures for low-temperature gas sensing. ACS Cent. Sci. 2021, 7, 1885–1897.

    CAS  Google Scholar 

  30. Wu, C. H.; Zhu, Z.; Huang, S. Y.; Wu, R. J. Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors. J. Alloys Compd. 2019, 776, 965–973.

    CAS  Google Scholar 

  31. Li, Y. Q.; Bastakoti, B. P.; Imura, M.; Dai, P. C.; Yamauchi, Y. Easy and general synthesis of large-sized mesoporous rare-earth oxide thin films by ‘micelle assembly’. Chem. Asian J. 2015, 10, 2590–2593.

    CAS  Google Scholar 

  32. Tian, S. Q.; Zhang, Y. P.; Zeng, D. W.; Wang, H.; Li, N.; Xie, C. S.; Pan, C. X.; Zhao, X. J. Surface doping of La ions into ZnO nanocrystals to lower the optimal working temperature for HCHO sensing properties. Phys. Chem. Chem. Phys. 2015, 17, 27437–27445.

    CAS  Google Scholar 

  33. Wang, J. R.; Shen, L. F.; Yan, S.; Pun, E. Y. B.; Lin, H. A novel multifunctional BVO-T1Y8 porous nanofibers for multi-selective gas sensing and real-time temperature monitoring. Chem. Eng. J. 2022, 431, 134175.

    CAS  Google Scholar 

  34. Bharathi, P.; Mohan, M. K.; Shalini, V.; Harish, S.; Navaneethan, M.; Archana, J.; Kumar, M. G.; Dhivya, P.; Ponnusamy, S.; Shimomura, M. et al. Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications. Appl. Surf. Sci. 2020, 499, 143857.

    CAS  Google Scholar 

  35. Niu, X. S.; Zhong, H. X.; Wang, X. J.; Jiang, K. Sensing properties of rare earth oxide doped In2O3 by a sol-gel method. Sens. Actuators B 2006, 115, 434–438.

    CAS  Google Scholar 

  36. Sohal, M. K.; Mahajan, A.; Gasso, S.; Nahirniak, S. V.; Dontsova, T. A.; Singh, R. C. Rare earth-tuned oxygen vacancies in gadolinium-doped tin oxide for selective detection of volatile organic compounds. J. Mater. Sci.: Mater. Electron. 2020, 31, 8446–8455.

    CAS  Google Scholar 

  37. Kaur, J.; Anand, K.; Kaur, A.; Singh, R. C. Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite. Sens. Actuators B 2018, 258, 1022–1035.

    CAS  Google Scholar 

  38. Mathankumar, G.; Bharathi, P.; Mohan, M. K.; Harish, S.; Navaneethan, M.; Archana, J.; Suresh, P.; Mani, G. K.; Dhivya, P.; Ponnusamy, S. et al. Synthesis and functional properties of nanostructured Gd-doped WO3/TiO2 composites for sensing applications. Mater. Sci. Semicond. Process. 2020, 105, 104732.

    CAS  Google Scholar 

  39. Çolak, H.; Karaköse, E. Gadolinium(III)-doped ZnO nanorods and gas sensing properties. Mater. Sci. Semicond. Process. 2022, 139, 106329.

    Google Scholar 

  40. Li, Y. H.; Luo, W.; Qin, N.; Dong, J. P.; Wei, J.; Li, W.; Feng, S. S.; Chen, J. C.; Xu, J. Q.; Elzatahry, A. A. et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S Sensing. Angew. Chem., Int. Ed. 2014, 53, 9035–9040.

    CAS  Google Scholar 

  41. Brezesinski, T.; Rohlfing, D. F.; Sallard, S.; Antonietti, M.; Smarsly, B. M. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance. Small 2006, 2, 1203–1211.

    CAS  Google Scholar 

  42. Tahir, M. B.; Sagir, M. Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Sep. Purif. Technol. 2019, 209, 94–102.

    Google Scholar 

  43. Zhao, Y. F.; Zou, X. X.; Chen, H.; Chu, X. F.; Li, G. D. Tailoring energy level and surface basicity of metal oxide semiconductors by rare-earth incorporation for high-performance formaldehyde detection. Inorg. Chem. Front. 2019, 6, 1767–1774.

    CAS  Google Scholar 

  44. Villa, K.; Murcia-López, S.; Morante, J. R.; Andreu, T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B 2016, 187, 30–36.

    CAS  Google Scholar 

  45. Zhang, J. Y.; Deng, Y. H.; Gu, D.; Wang, S. T.; She, L.; Che, R. C.; Wang, Z. S.; Tu, B.; Xie, S. H.; Zhao, D. Y. Ligand-assisted assembly approach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline framework. Adv. Energy Mater. 2011, 1, 241–248.

    CAS  Google Scholar 

  46. Kuznetsova, Y. A.; Zatsepin, D. A.; Zatsepin, A. F.; Gavrilov, N. V. Energy gaps, refractive index and photon emission from point defects in copper-doped Gd2O3 nanocrystalline films. J. Alloys Compd. 2022, 904, 163872.

    CAS  Google Scholar 

  47. Xu, L.; Dong, B.; Wang, Y.; Bai, X.; Chen, J. S.; Liu, Q.; Song, H. W. Porous In2O3:RE (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb) nanotubes: Electrospinning preparation and room gas-sensing properties. J. Phys. Chem. C 2010, 114, 9089–9095.

    CAS  Google Scholar 

  48. Wang, L.; Ma, S. Y.; Xu, X. L.; Li, J. P.; Yang, T. T.; Cao, P. F.; Yun, P. D.; Wang, S. Y.; Han, T. Oxygen vacancy-based Tb-doped SnO2 nanotubes as an ultra-sensitive sensor for ethanol detection. Sens. Actuators B 2021, 344, 130111.

    CAS  Google Scholar 

  49. Kabtamu, D. M.; Chen, J. Y.; Chang, Y. C.; Wang, C. H. Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries. J. Mater. Chem. A 2016, 4, 11472–11480.

    CAS  Google Scholar 

  50. Sun, J. H.; Guo, J.; Ye, J. Y.; Song, B. J.; Zhang, K. W.; Bai, S. L.; Luo, R. X.; Li, D. Q.; Chen, A. F. Synthesis of Sb doping hierarchical WO3 microspheres and mechanism of enhancing sensing properties to NO2. J. Alloys Compd. 2017, 692, 876–884.

    CAS  Google Scholar 

  51. Yan, J.; Guo, X. Y.; Zhu, Y.; Song, Z. L.; Lee, L. Y. S. Solution-processed metal doping of sub-3 nm SnO2 quantum wires for enhanced H2S sensing at low temperature. J. Mater. Chem. A 2022, 10, 15657–15664.

    CAS  Google Scholar 

  52. Govindaraj, T.; Mahendran, C.; Marnadu, R.; Shkir, M.; Manikandan, V. S. The remarkably enhanced visible-light-photocatalytic activity of hydrothermally synthesized WO3 nanorods: An effect of Gd doping. Ceram. Int. 2021, 47, 4267–4278.

    CAS  Google Scholar 

  53. Chandrasekaran, S.; Zhang, P. X.; Peng, F.; Bowen, C.; Huo, J.; Deng, L. B. Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. J. Mater. Chem. A 2019, 7, 6161–6172.

    CAS  Google Scholar 

  54. Ren, Y.; Zou, Y. D.; Liu, Y.; Zhou, X. R.; Ma, J. H.; Zhao, D. Y.; Wei, G. F.; Ai, Y. J.; Xi, S. B.; Deng, Y. H. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 2020, 19, 203–211.

    CAS  Google Scholar 

  55. Liu, Y.; Li, J.; Li, W. Z.; Yang, Y. H.; Li, Y. M.; Chen, Q. Y. Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping. J. Phys. Chem. C 2015, 119, 14834–14842.

    CAS  Google Scholar 

  56. Wu, J.; Feng, S. L.; Wei, X. Z.; Shen, J.; Lu, W. Q.; Shi, H. F.; Tao, K.; Lu, S. R.; Sun, T.; Yu, L. Y. et al. Facile synthesis of 3D graphene flowers for ultrasensitive and highly reversible gas sensing. Adv. Funct. Mater. 2016, 26, 7462–7469.

    CAS  Google Scholar 

  57. Duy, L. T.; Kim, D. J.; Trung, T. Q.; Dang, V. Q.; Kim, B. Y.; Moon, H. K.; Lee, N. E. High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars. Adv. Funct. Mater. 2015, 25, 883–890.

    CAS  Google Scholar 

  58. Jeong, S. Y.; Moon, Y. K.; Kim, J. K.; Park, S. W.; Jo, Y. K.; Kang, Y. C.; Lee, J. H. A general solution to mitigate water poisoning of oxide chemiresistors: Bilayer sensors with Tb4O7 overlayer. Adv. Funct. Mater. 2021, 31, 2007895.

    CAS  Google Scholar 

  59. Zhang, J.; Su, D. S.; Blume, R.; Schlögl, R.; Wang, R.; Yang, X. G.; Gajović, A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2010, 49, 8640–8644.

    CAS  Google Scholar 

  60. Sanz, S. G.; McMillan, L.; McGregor, J.; Zeitler, J. A.; Al-Yassir, N.; Al-Khattaf, S.; Gladden, L. F. The enhancement of the catalytic performance of CrOx/Al2O3 catalysts for ethylbenzene dehydrogenation through tailored coke deposition. Catal. Sci. Technol. 2016, 6, 1120–1133.

    Google Scholar 

  61. Yang, X. Q.; Yu, X. L.; Lin, M. Y.; Ma, X. Y.; Ge, M. F. Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation. Catal. Today 2019, 327, 254–261.

    CAS  Google Scholar 

  62. Sun, H.; Liu, Z. G.; Chen, S.; Quan, X. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chem. Eng. J. 2015, 270, 58–65.

    CAS  Google Scholar 

  63. Zhao, L. L.; Zhang, Z. P.; Li, Y. S.; Leng, X. S.; Zhang, T. R.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion. Appl. Catal. B 2019, 245, 502–512.

    CAS  Google Scholar 

  64. Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Theory of gasdiffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B 2001, 80, 125–131.

    CAS  Google Scholar 

  65. Wagner, T.; Haffer, S.; Weinberger, C.; Klaus, D.; Tiemann, M. Mesoporous materials as gas sensors. Chem. Soc. Rev. 2013, 42, 4036–4053.

    CAS  Google Scholar 

  66. Liu, F. J.; Wang, X. Z.; Chen, X. Y.; Song, X. J.; Tian, J.; Cui, H. Z. Porous ZnO ultrathin nanosheets with high specific surface areas and abundant oxygen vacancies for acetylacetone gas sensing. ACS Appl. Mater. Interfaces 2019, 11, 24757–24763.

    CAS  Google Scholar 

  67. Zhou, X. R.; Cheng, X. W.; Zhu, Y. H.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H.; Zhao, D. Y. Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett. 2018, 29, 405–416.

    CAS  Google Scholar 

  68. Bai, J. L.; Luo, Y. B.; Chen, C.; Deng, Y.; Cheng, X.; An, B. X.; Wang, Q.; Li, J. P.; Zhou, J. Y.; Wang, Y. R. et al. Functionalization of 1D In2O3 nanotubes with abundant oxygen vacancies by rare earth dopant for ultra-high sensitive ethanol detection. Sens. Actuators B 2020, 324, 128755.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2020YFB2008600), the National Natural Science Foundation of China (Nos. 21875044, 22125501, and 22105043), the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No. 20JC1415300), the China Postdoctoral Science Foundation (Nos. 2021TQ0066 and 2021M690660), the Fundamental Research Funds for the Central Universities (No. 20720220010), the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, the young scientist project of MOE innovation platform, Donghua University (No. KF2120), and the Foshan Science and Technology Innovation Program (No. 2017IT100121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Yue, Yidong Zou or Yonghui Deng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, K., Liu, Y. et al. Gadolinium-doped mesoporous tungsten oxides: Rational synthesis, gas sensing performance, and mechanism investigation. Nano Res. 16, 7527–7536 (2023). https://doi.org/10.1007/s12274-022-5274-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5274-6

Keywords

Navigation