Skip to main content
Log in

Dynamic reconstruction of Ni-Zn alloy solid-electrolyte interface for highly stable Zn anode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aqueous zinc ion batteries (AZIBs) are ideal candidates for large-scale battery storage, with a high theoretical specific capacity, ecological friendliness, and extremely low cost but are strongly hindered by zinc dendrite growth. Herein, Ni-Zn alloy is artificially constructed as a solid-electrolyte interface (SEI) for Zn anodes by electrodeposition and annealing. The Ni-Zn alloy layer acts as a dynamic shield at the electrode/electrolyte interface. Interestingly, the zinc atoms migrate out of the electrode body during zinc stripping while merging into the electrode body during the plating. In this way, the Ni-Zn alloy is able to guide the zinc deposition in the horizontal direction, thereby suppressing the formation of dendrite. Benefiting from those, the Ni-Zn alloy symmetric cell shows a greatly improved cycle life and is able to operate stably for 1,900 h at a current density of 0.5 mA·cm−2. The present study is a strategy for negative electrode protection of AZIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Y.; Huang, G. Y.; Xu, S. M.; He, Y. H.; Liu, X. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 2016, 165, 390–396.

    Article  CAS  Google Scholar 

  2. Vishvakarma, S.; Dhawan, N. Recovery of cobalt and lithium values from discarded Li-ion batteries. J. Sustainable Metall. 2019, 5, 204–209.

    Article  Google Scholar 

  3. Hou, Z. G.; Dong, M. F.; Xiong, Y. L.; Zhang, X. Q.; Ao, H. S.; Liu, M. K.; Zhu, Y. C.; Qian, Y. T. A high-energy and long-life aqueous Zn/birnessite battery via reversible water and Zn2+ coinsertion. Small 2020, 16, 2001228.

    Article  CAS  Google Scholar 

  4. Hou, Z. G.; Zhang, X. Q.; Li, X. N.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 2017, 5, 730–738.

    Article  CAS  Google Scholar 

  5. Hou, Z. G.; Mao, W. T.; Zhang, Z. X.; Chen, J. W.; Ao, H. S.; Qian, Y. T. Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. Nano Res. 2022, 15, 5072–5080.

    Article  CAS  Google Scholar 

  6. Dai, Y. H.; Liao, X. B.; Yu, R. H.; Li, J. H.; Li, J. T.; Tan, S. S.; He, P.; An, Q. Y.; Wei, Q. L.; Chen, L. N. et al. Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 2021, 33, 2100359.

    Article  CAS  Google Scholar 

  7. Dai, Y. H.; Li, J. H.; Chen, L. N.; Le, K. H.; Cai, Z. J.; An, Q. Y.; Zhang, L.; Mai, L. Q. Generating H+ in catholyte and OH in anolyte: An approach to improve the stability of aqueous zinc-ion batteries. ACS Energy Lett. 2021, 6, 684–686.

    Article  CAS  Google Scholar 

  8. Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

    Article  CAS  Google Scholar 

  9. Jian, Q. P.; Wan, Y. H.; Sun, J.; Wu, M. C.; Zhao, T. S. A dendrite-free zinc anode for rechargeable aqueous batteries. J. Mater. Chem. A 2020, 8, 20175–20184.

    Article  CAS  Google Scholar 

  10. An, Y. L.; Tian, Y.; Zhang, K.; Liu, Y. P.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 2021, 31, 2101886.

    Article  CAS  Google Scholar 

  11. Liu, H. Z.; Li, J. H.; Zhang, X. N.; Liu, X. X.; Yan, Y.; Chen, F. J.; Zhang, G. H.; Duan, H. G. Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2106550.

    Article  CAS  Google Scholar 

  12. An, Y. L.; Tian, Y.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 2021, 15, 15259–15273.

    Article  CAS  Google Scholar 

  13. Cui, M. W.; Xiao, Y.; Kang, L. T.; Du, W.; Gao, Y. F.; Sun, X. Q.; Zhou, Y. L.; Li, X. M.; Li, H. F.; Jiang, F. Y. et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6490–6496.

    Article  CAS  Google Scholar 

  14. Zhang, Y. M.; Howe, J. D.; Ben-Yoseph, S.; Wu, Y. T.; Liu, N. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 2021, 6, 404–412.

    Article  CAS  Google Scholar 

  15. He, P.; Huang, J. X. Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 2021, 6, 1990–1995.

    Article  CAS  Google Scholar 

  16. Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

    Article  CAS  Google Scholar 

  17. Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem., Int. Ed. 2021, 60, 7366–7375.

    Article  CAS  Google Scholar 

  18. Chen, S. G.; Lan, R.; Humphreys, J.; Tao, S. W. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 2020, 28, 205–215.

    Article  Google Scholar 

  19. Liu, B. T.; Wang, S. J.; Wang, Z. L.; Lei, H.; Chen, Z. T.; Mai, W. J. Novel 3D nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 2020, 16, 2001323.

    Article  CAS  Google Scholar 

  20. Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

    Article  CAS  Google Scholar 

  21. Wang, T. T.; Li, C. P.; Xie, X. S.; Lu, B. G.; He, Z. X.; Liang, S. Q.; Zhou, J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano 2020, 14, 16321–16347.

    Article  CAS  Google Scholar 

  22. Wang, J. W.; Yang, Y.; Zhang, Y. X.; Li, Y. M.; Sun, R.; Wang, Z. C.; Wang, H. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 2021, 35, 19–46.

    Article  CAS  Google Scholar 

  23. Ieffa, S.; Bernasconi, R.; Nobili, L.; Cavallotti, P. L.; Magagnin, L. Direct and pulse plating of metastable Zn-Ni alloys. Trans. IMF 2014, 92, 321–324.

    Article  CAS  Google Scholar 

  24. Bernasconi, R.; Panzeri, G.; Firtin, G.; Kahyaoglu, B.; Nobili, L.; Magagnin, L. Electrodeposition of ZnNi alloys from choline chloride/ethylene glycol deep eutectic solvent and pure ethylene glycol for corrosion protection. J. Phys. Chem. B 2020, 124, 10739–10751.

    Article  CAS  Google Scholar 

  25. Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem., Int. Ed. 2019, 58, 15841–15847.

    Article  Google Scholar 

  26. Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

    Article  CAS  Google Scholar 

  27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  28. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  CAS  Google Scholar 

  29. Halgren, T. A.; Lipscomb, W. N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49, 225–232.

    Article  CAS  Google Scholar 

  30. Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258.

    Article  CAS  Google Scholar 

  31. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

    Article  CAS  Google Scholar 

  32. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  33. Smidstrup, S.; Pedersen, A.; Stokbro, K.; Jónsson, H. Improved initial guess for minimum energy path calculations. J. Chem. Phys. 2014, 120, 214106.

    Article  Google Scholar 

  34. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

    Article  Google Scholar 

  35. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.

    Article  CAS  Google Scholar 

  36. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 2002, 114, 10024–10035.

    Article  Google Scholar 

  37. Abou-Krisha, M. M.; Assaf, F. H.; Alduaij, O. K.; Eissa, A. A. Deposition potential influence on the electrodeposition of Zn-Ni-Mn alloy. Trans. Indian Inst. Met. 2017, 70, 31–40.

    Article  CAS  Google Scholar 

  38. Zhang, D. D.; Shi, J. Y.; Qi, Y.; Wang, X. M.; Wang, H.; Li, M. R.; Liu, S. Z.; Li, C. Quasi-amorphous metallic nickel nanopowder as an efficient and durable electrocatalyst for alkaline hydrogen evolution. Adv. Sci. (Weinh.) 2018, 5, 1801216.

    Google Scholar 

  39. Chu, Y. Z.; Zhang, S.; Wu, S.; Hu, Z. L.; Cui, G. L.; Luo, J. Y. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy. Environ. Sci. 2021, 14, 3609–3620.

    Article  CAS  Google Scholar 

  40. Jia, H.; Wang, Z. Q.; Dirican, M.; Qiu, S.; Chan, C. Y.; Fu, S. H.; Fei, B.; Zhang, X. W. A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J. Mater. Chem. A 2021, 9, 5597–5605.

    Article  CAS  Google Scholar 

  41. Cao, Z. Y.; Zhu, X. D.; Xu, D. X.; Dong, P.; Chee, M. O. L.; Li, X. J.; Zhu, K. Y.; Ye, M. X.; Shen, J. F. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021, 36, 132–138.

    Article  Google Scholar 

  42. Yang, Y.; Liu, C. Y.; Lv, Z. H.; Yang, H.; Zhang, Y. F.; Ye, M. H.; Chen, L. B.; Zhao, J. B.; Li, C. C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 2021, 33, 2007388.

    Article  CAS  Google Scholar 

  43. Zhai, S. L.; Wang, N.; Tan, X. H.; Jiang, K. R.; Quan, Z. Y.; Li, Y. W.; Li, Z. Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Adv. Funct. Mater. 2021, 31, 2008894.

    Article  CAS  Google Scholar 

  44. Wang, Y. Y.; Chen, Y. J.; Liu, W.; Ni, X. Y.; Qing, P.; Zhao, Q. W.; Wei, W. F.; Ji, X. B.; Ma, J. M.; Chen, L. B. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 2021, 9, 8452–8461.

    Article  CAS  Google Scholar 

  45. Qian, Y.; Meng, C.; He, J. X.; Dong, X. A lightweight 3D Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries. J. Power Sources 2020, 480, 228871.

    Article  CAS  Google Scholar 

  46. Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.

    Article  CAS  Google Scholar 

  47. Hong, L.; Wu, X. M.; Ma, C.; Huang, W.; Zhou, Y. F.; Wang, K. X.; Chen, J. S. Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. J. Mater. Chem. A 2021, 9, 16814–16823.

    Article  CAS  Google Scholar 

  48. Guo, W.; Zhang, Y.; Tong, X.; Wang, X.; Zhang, L.; Xia, X.; Tu, J. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater. Today Energy 2021, 20, 100675.

    Article  CAS  Google Scholar 

  49. Liang, R. L.; Fu, J.; Deng, Y. P.; Pei, Y.; Zhang, M. W.; Yu, A. P.; Chen, Z. W. Parasitic electrodeposition in Zn-MnO2 batteries and its suppression for prolonged cyclability. Energy Storage Mater. 2021, 36, 478–484.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (No. 2020YFA0715000), the National Natural Science Foundation of China (Nos. 52127816 and 22109123), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (No. XHT2020-003), and the Sanya Science and Educa tion Innovation Park of Wuhan University of Technology (Nos. 2020KF0022 and 2021KF0020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhang or Liqiang Mai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Dai, Y., Zhao, K. et al. Dynamic reconstruction of Ni-Zn alloy solid-electrolyte interface for highly stable Zn anode. Nano Res. 16, 11604–11611 (2023). https://doi.org/10.1007/s12274-022-5157-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5157-x

Keywords

Navigation