Skip to main content
Log in

Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aqueous rechargeable sodium ion batteries (ARSIBs), with intrinsic safety, low cost, and greenness, are attracting more and more attentions for large scale energy storage application. However, the low energy density hampers their practical application. Here, a battery architecture designed by bipolar electrode with graphite/amorphous carbon film as current collector shows high energy density and excellent rate-capability. The bipolar electrode architecture is designed to not only improve energy density of practical battery by minimizing inactive ingredient, such as tabs and cases, but also guarantee high rate-capability through a short electron transport distance in the through-plane direction instead of in-plane direction for traditional cell architecture. As a proof of concept, a prototype pouch cell of 8 V based on six Na2MnFe(CN)6∥NaTi2(PO4)3 bipolar electrodes stacking using a “water-in-polymer” gel electrolyte is demonstrated to cycle up to 4,000 times, with a high energy density of 86 Wh·kg−1 based on total mass of both cathode and anode. This result opens a new avenue to develop advance high-energy ARSIBs for grid-scale energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Z. X.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180–232.

    Article  CAS  Google Scholar 

  2. Yang, C. Y.; Chen, J.; Ji, X.; Pollard, T. P.; Lü, X. J.; Sun, C. J.; Hou, S.; Liu, Q.; Liu, C. M.; Qing, T. T. et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 2019, 569, 245–250.

    Article  CAS  Google Scholar 

  3. Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943.

    Article  CAS  Google Scholar 

  4. Gupta, S. From gadgets to the smart grid. Nature 2015, 526, S90–S91.

    Article  CAS  Google Scholar 

  5. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  6. Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; Pérez del Pino, A.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694.

    Article  CAS  Google Scholar 

  7. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  CAS  Google Scholar 

  8. Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 2017, 10, 4082–4114.

    Article  CAS  Google Scholar 

  9. Hasa, I.; Hassoun, J.; Passerini, S. Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano Res. 2017, 10, 3942–3969.

    Article  CAS  Google Scholar 

  10. Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

    Article  Google Scholar 

  11. Xu, K.; Wang, C. Batteries: Widening voltage windows. Nat. Energy 2016, 1, 16161.

    Article  CAS  Google Scholar 

  12. Liu, J. L.; Xu, C. H.; Chen, Z.; Ni, S. B.; Shen, Z. X. Progress in aqueous rechargeable batteries. Green Energy Environ. 2018, 3, 20–41.

    Article  Google Scholar 

  13. Eftekhari, A. High-energy aqueous lithium batteries. Adv. Energy Mater. 2018, 8, 1801156.

    Article  CAS  Google Scholar 

  14. Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L. M.; Wang, Y. G.; Wang, C. S.; Xia, Y. Y. Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703008.

    Article  CAS  Google Scholar 

  15. Liu, M.; Ao, H.; Jin, Y.; Hou, Z.; Zhang, X.; Zhu, Y.; Qian, Y. Aqueous rechargeable sodium ion batteries: Developments and prospects. Mater. Today Energy 2020, 17, 100432.

    Article  Google Scholar 

  16. Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114, 11788–11827.

    Article  CAS  Google Scholar 

  17. Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

    Article  CAS  Google Scholar 

  18. Chao, D. L.; Qiao, S. Z. Toward high-voltage aqueous batteries: Super-or low-concentrated electrolyte? Joule 2020, 4, 1846–1851.

    Article  Google Scholar 

  19. Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 2013, 3, 290–294.

    Article  CAS  Google Scholar 

  20. Whitacre, J. F.; Tevar, A.; Sharma, S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 2010, 12, 463–466.

    Article  CAS  Google Scholar 

  21. Whitacre, J. F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S. E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J. et al. An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications. J. Power Sources 2012, 213, 255–264.

    Article  CAS  Google Scholar 

  22. Whitacre, J. F.; Shanbhag, S.; Mohamed, A.; Polonsky, A.; Carlisle, K.; Gulakowski, J.; Wu, W.; Smith, C.; Cooney, L.; Blackwood, D. et al. A polyionic, large-format energy storage device using an aqueous electrolyte and thick-format composite NaTi2(PO4)3/activated carbon negative electrodes. Energy Technol. 2015, 3, 20–31.

    Article  CAS  Google Scholar 

  23. Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Yang, H. X. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 2013, 31, 145–148.

    Article  CAS  Google Scholar 

  24. Wu, X. Y.; Sun, M. Y.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 2014, 7, 407–411.

    Article  CAS  Google Scholar 

  25. Pasta, M.; Wessells, C. D.; Liu, N.; Nelson, J.; McDowell, M. T.; Huggins, R. A.; Toney, M. F.; Cui, Y. Full open-framework batteries for stationary energy storage. Nat. Commun. 2014, 5, 3007.

    Article  CAS  Google Scholar 

  26. Kumar, P. R.; Jung, Y. H.; Lim, C. H.; Kim, D. K. Na3V2O2x(PO4)2F3−2x: A stable and high-voltage cathode material for aqueous sodium-ion batteries with high energy density. J. Mater. Chem. A 2015, 3, 6271–6275.

    Article  CAS  Google Scholar 

  27. Zhang, Q.; Liao, C. Y.; Zhai, T. Y.; Li, H. Q. A high rate 1. 2V aqueous sodium-ion battery based on all NASICON structured NaTi2(PO4)3 and Na3V2(PO4)3. Electrochim. Acta 2016, 196, 470–478.

    Article  CAS  Google Scholar 

  28. Gao, H. C.; Goodenough, J. B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem., Int. Ed. 2016, 55, 12768–12772.

    Article  CAS  Google Scholar 

  29. Wang, Y. S.; Mu, L. Q.; Liu, J.; Yang, Z. Z.; Yu, X. Q.; Gu, L.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q. et al. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 2015, 5, 1501005.

    Article  CAS  Google Scholar 

  30. Suo, L. M.; Borodin, O.; Wang, Y. S.; Rong, X. H.; Sun, W.; Fan, X.; Xu, S. Y.; Schroeder, M. A.; Cresce, A. V.; Wang, F. et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 2017, 7, 1701189.

    Article  CAS  Google Scholar 

  31. Zhang, Q. C.; Man, P.; He, B.; Li, C. W.; Li, Q. L.; Pan, Z. H.; Wang, Z. X.; Yang, J.; Wang, Z.; Zhou, Z. Y. et al. Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries. Nano Energy 2020, 67, 104212.

    Article  CAS  Google Scholar 

  32. Chen, L.; Shao, H. Z.; Zhou, X. F.; Liu, G. Q.; Jiang, J.; Liu, Z. P. Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. Nat. Commun. 2016, 7, 11982.

    Article  Google Scholar 

  33. Sun, T. J.; Liu, C.; Wang, J. Y.; Nian, Q. S.; Feng, Y. Z.; Zhang, Y.; Tao, Z. L.; Chen, J. A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Res. 2020, 13, 676–683.

    Article  CAS  Google Scholar 

  34. Wang, H. B.; Zhang, T. R.; Chen, C.; Ling, M.; Lin, Z.; Zhang, S. Q.; Pan, F.; Liang, C. D. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3. Nano Res. 2018, 11, 490–498.

    Article  CAS  Google Scholar 

  35. Perticarari, S.; Grange, E.; Doizy, T.; Pellegrin, Y.; Quarez, E.; Oyaizu, K.; Fernandez-Ropero, A. J.; Guyomard, D.; Poizot, P.; Odobel, F. et al. Full organic aqueous battery based on TEMPO small molecule with millimeter-thick electrodes. Chem. Mater. 2019, 31, 1869–1880.

    Article  CAS  Google Scholar 

  36. Liu, S.; Wang, L. B.; Liu, J.; Zhou, M.; Nian, Q. S.; Feng, Y. Z.; Tao, Z. L.; Shao, L. Y. Na3V2(PO4)2F3-SWCNT: A high voltage cathode for non-aqueous and aqueous sodium-ion batteries. J. Mater. Chem. A 2019, 7, 248–256.

    Article  CAS  Google Scholar 

  37. Jiang, L. W.; Liu, L. L.; Yue, J. M.; Zhang, Q. Q.; Zhou, A. X.; Borodin, O.; Suo, L. M.; Li, H.; Chen, L. Q.; Xu, K. et al. High-voltage aqueous na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 2020, 32, 1904427.

    Article  CAS  Google Scholar 

  38. Han, J.; Zarrabeitia, M.; Mariani, A.; Jusys, Z.; Hekmatfar, M.; Zhang, H.; Geiger, D.; Kaiser, U.; Behm, R. J.; Varzi, A. et al. Halide-free water-in-salt electrolytes for stable aqueous sodium-ion batteries. Nano Energy 2020, 77, 105176.

    Article  CAS  Google Scholar 

  39. Luo, D. X.; Lei, P.; Tian, G. R.; Huang, Y. X.; Ren, X. F.; Xiang, X. D. Insight into electrochemical properties and reaction mechanism of a cobalt-rich prussian blue analogue cathode in a NaSO3CF3 electrolyte for aqueous sodium-ion batteries. J. Phys. Chem. C 2020, 124, 5958–5965.

    Article  CAS  Google Scholar 

  40. Nakamoto, K.; Sakamoto, R.; Sawada, Y.; Ito, M.; Okada, S. Over 2 V aqueous sodium-ion battery with prussian blue-type electrodes. Small Methods 2019, 3, 1800220.

    Article  CAS  Google Scholar 

  41. Yang, C. Y.; Chen, J.; Qing, T. T.; Fan, X. L.; Sun, W.; Von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A. et al. 4.0 V aqueous Li-ion batteries. Joule 2017, 1, 122–132.

    Article  CAS  Google Scholar 

  42. Warner, J. The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology; Elsevier: Amsterdam, 2015.

    Google Scholar 

  43. Pistoia, G. Lithium-Ion Batteries; Elsevier: Amsterdam, 2013.

    Google Scholar 

  44. Ellis, K.; Hill, A.; Hill, J.; Loyns, A.; Partington, T. The performance of Ebonex® electrodes in bipolar lead-acid batteries. J. Power Sources 2004, 136, 366–371.

    Article  CAS  Google Scholar 

  45. Wiesener, K.; Ohms, D.; Benczúr-Ürmössy, G.; Berthold, M.; Haschka, F. High power metal hydride bipolar battery. J. Power Sources 1999, 84, 248–258.

    Article  CAS  Google Scholar 

  46. Ogihara, N.; Yasuda, T.; Kishida, Y.; Ohsuna, T.; Miyamoto, K.; Ohba, N. Organic dicarboxylate negative electrode materials with remarkably small strain for high-voltage bipolar batteries. Angew. Chem. 2014, 126, 11651–11656.

    Article  Google Scholar 

  47. Liu, T. F.; Zhang, Y. P.; Chen, C.; Lin, Z.; Zhang, S. Q.; Lu, J. Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 2019, 10, 1965.

    Article  CAS  Google Scholar 

  48. Luo, W.; Hayden, J.; Jang, S. H.; Wang, Y. L.; Zhang, Y.; Kuang, Y. D.; Wang, Y. B.; Zhou, Y. B.; Rubloff, G. W.; Lin, C. F. et al. Highly conductive, light weight, robust, corrosion-resistant, scalable, all-fiber based current collectors for aqueous acidic batteries. Adv. Energy Mater. 2018, 8, 1702615.

    Article  CAS  Google Scholar 

  49. Yao, Y. G.; Jiang, F.; Yang, C. Y.; Fu, K. K.; Hayden, J.; Lin, C. F.; Xie, H.; Jiao, M. L.; Yang, C. P.; Wang, Y. L. et al. Epitaxial welding of carbon nanotube networks for aqueous battery current collectors. ACS Nano 2018, 12, 5266–5273.

    Article  CAS  Google Scholar 

  50. Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

    Article  CAS  Google Scholar 

  51. Whitehead, A. H.; Schreiber, M. Current collectors for positive electrodes of lithium-based batteries. J. Electrochem. Soc. 2005, 152, A2105.

    Article  Google Scholar 

  52. Gheytani, S.; Liang, Y. L.; Jing, Y.; Xu, J. Q.; Yao, Y. Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries. J. Mater. Chem. A 2016, 4, 395–399.

    Article  CAS  Google Scholar 

  53. Kühnel, R. S.; Reber, D.; Remhof, A.; Figi, R.; Bleiner, D.; Battaglia, C. “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries. Chem. Commun. 2016, 52, 10435–10438.

    Article  Google Scholar 

  54. Wen, Y. H.; Shao, L.; Zhao, P. C.; Wang, B. Y.; Cao, G. O.; Yang, Y. S. Carbon coated stainless steel mesh as a low-cost and corrosion-resistant current collector for aqueous rechargeable batteries. J. Mater. Chem. A 2017, 5, 15752–15758.

    Article  CAS  Google Scholar 

  55. Wang, Y. G.; Xia, Y. Y. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. Electrochem. Commun. 2005, 7, 1138–1142.

    Article  CAS  Google Scholar 

  56. Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2010, 2, 760–765.

    Article  CAS  Google Scholar 

  57. Liu, S.; Ye, S. H.; Li, C. Z.; Pan, G. L.; Gao, X. P. Rechargeable aqueous lithium-ion battery of TiO2/LiMn2O4 with a high voltage. J. Electrochem. Soc. 2011, 158, A1490.

    Article  CAS  Google Scholar 

  58. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52102261), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB150007), the Natural Science Foundation of Jiangsu Province (No. BK20210942), the Applied Basic Research Programs of Changzhou (No. CJ20200034), and Changzhou Science and Technology Young Talents Promotion Project (No. KYZ21005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Hou or Yitai Qian.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Mao, W., Zhang, Z. et al. Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. Nano Res. 15, 5072–5080 (2022). https://doi.org/10.1007/s12274-022-4113-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4113-0

Keywords

Navigation