Skip to main content
Log in

Deposition Potential Influence on the Electrodeposition of Zn–Ni–Mn Alloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effect of deposition potential on the electrodeposition, composition, surface characteristics and corrosion resistance properties of Zn–Ni–Mn alloy coatings were investigated. During the deposition potential range from −0.500 to −1.000 V, normal codeposition of the alloy components occurred, meanwhile at deposition potentials more cathodic than −1.000 V, the anomalous codeposition took place. Shifting the deposition potentials toward the negative direction led to an increase in the thickness of the deposit, incremented the adhesion and compactness and improved the corrosion resistance properties. X-ray diffraction studies of the deposit showed the presence of hexagonal pure Zn phase, hexagonal Mn0.27Zn0.73 phase and cubic γ-Ni5Zn21 and/or tetragonal δ-Ni3Zn22 phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Figueroa D, and Robinson M J, Corros Sci 50 (2008) 1066.

    Article  Google Scholar 

  2. Bates J A, Plat Surf Finish 81 (1994) 36.

    Google Scholar 

  3. Fabri-Miranda F J, Barcia O E, Mattos O R, and Wiart R, J Electochem Soc 144 (1997) 3441.

    Article  Google Scholar 

  4. Ramanauskas R, Muleshkova L, Maldonado L, and Dobrovolskis P, Corros Sci 40 (1998) 401.

    Article  Google Scholar 

  5. Brenner A, Electrodeposition of Alloys, vol. 2, Academic Press, New York (1963), p. 194.

    Book  Google Scholar 

  6. Müller C, Sarret M, and Benballa M, Electrochim Acta 46 (2001) 2811.

    Article  Google Scholar 

  7. Velichenko A B, Portillo J, Alcobé X, Sarret M, and Müller C, Electrochim Acta 46 (2000) 407.

    Article  Google Scholar 

  8. Sider M, Fan C, and Piron D L, J Appl Electrochem 31 (2001) 313.

    Article  Google Scholar 

  9. Byk T V, Gaevskaya T V, and Tsybulskaya L S, Surf Coat Technol 202 (2008) 5817.

    Article  Google Scholar 

  10. Chandrasekar M S, Srinivasan S, and Pushpavanam M, J Solid State Electrochem 13 (2009) 781.

    Article  Google Scholar 

  11. Ramanauskas R, Gudavičiūtė L, Kaliničenko A, and Juškėnas R, J Solid State Electrochem 9 (2005) 900.

    Article  Google Scholar 

  12. Ivanov I, and Kirilova I, J Appl Electrochem 33 (2003) 239.

    Article  Google Scholar 

  13. Szczygieł B, Laszczyńska A, and Tylus W, Surf Coat Technol 204 (2010) 1438.

    Article  Google Scholar 

  14. Qiao X, Li H, Zhao W, and Li D, Electrochim Acta 89 (2013) 771.

    Article  Google Scholar 

  15. Sriraman K R, Brahimi S, Szpunar J A, Osborne J H, and Yue S, Electrochim Acta 105 (2013) 314.

    Article  Google Scholar 

  16. Eyraud M, Garnier A, Mazeron F, and Crousier J, Plat Surf Finish 1 (1995) 63.

    Google Scholar 

  17. Bozzini B, Griskonis E, Fanigluilo A, and Sulcius A, Surf Coat Technol 154 (2002) 294.

    Article  Google Scholar 

  18. Wilcox G D, and Peterson B, Trans Inst Met Finish 74 (1996) 115.

    Google Scholar 

  19. Sylla D, Rebere C, Gadouleau M, Savall C, Creus J, and Refait P, J Appl Electrochem 35 (2005) 1133.

    Article  Google Scholar 

  20. Savall C, Rebere C, Sylla D, Gadouleau M, Refait P, and Creus J, Mater Sci Eng A 430 (2006) 165.

    Article  Google Scholar 

  21. Bučko M, Rogan J, Stevanović S I, Perić-Grujić A, and Bajat J B, Corros Sci 53 (2011) 2861.

    Article  Google Scholar 

  22. Ortiz Z I, Díaz-Arista P, Meas Y, Ortega-Borges R, and Trejo G, Corros Sci 51 (2009) 2703.

    Article  Google Scholar 

  23. Boshkov N, Surf Coat Technol 172 (2003) 217.

    Article  Google Scholar 

  24. Boshkov N, Petrov K, and Raichevsky G, Surf Coat Technol 200 (2006) 5995.

    Article  Google Scholar 

  25. Kashyap R, Srivastava S N, and Srivastava S C, J Appl Electrochem 15 (1985) 23.

    Article  Google Scholar 

  26. Girčienė O, Ramanauskas R, Gudavičiūtė L and Martušienė A, Chemija 24 (2013) 182.

    Google Scholar 

  27. Karwas C, and Hepel T, J Electrochem Soc 135 (1988) 839.

    Article  Google Scholar 

  28. Abou-Krisha M M, Appl Surf Sci 252 (2005) 1035.

    Article  Google Scholar 

  29. Abou-Krisha M, Attia M, Assaf F, and Eissa A, Int J Electrochem Sci 10 (2015) 2972.

    Google Scholar 

  30. Assaf F, El-Seidy A, Abou-Krisha M, and Eissa A, Int J Electrochem Sci 10 (2015) 5465.

    Google Scholar 

  31. Assaf F, Abou-Krisha M, Alduaij O, El-Seidy A, and Eissa A, Int J Electrochem Sci 10 (2015) 6273.

    Google Scholar 

  32. Dolati A G, Ghorbani M, and Afshar A, Surf Coat Technol 166 (2003) 105.

    Article  Google Scholar 

  33. Hosseini M G, Ashassi-Sorkhabi H, and Ghiasvand H A Y, Surf Coat Technol 202 (2008) 2897.

    Article  Google Scholar 

  34. Swathirajan S, J Electrochem Soc 133 (1986) 671.

    Article  Google Scholar 

  35. Ohba M, Panossian Z, and Camargo P, Trans IMF 84 (2006) 320.

    Article  Google Scholar 

  36. Zehbour Panossian, Metal Finish 97 (1999) 88.

    Article  Google Scholar 

  37. Bajat J B, Petrović A B, and Maksimovć M D, J Serb Chem Soc 70 (2005) 1427.

    Article  Google Scholar 

  38. Lodhi Z F, Mol J M C, Hovestad A, Terryn H, and de Wit J H W, Surf Coat Technol 203 (2009) 1415.

    Article  Google Scholar 

  39. Roventi G, Fratesi R, Guardia R A D, and Barucca G, J Appl Electrochem 30 (2000) 173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Abou-Krisha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou-Krisha, M.M., Assaf, F.H., Alduaij, O.K. et al. Deposition Potential Influence on the Electrodeposition of Zn–Ni–Mn Alloy. Trans Indian Inst Met 70, 31–40 (2017). https://doi.org/10.1007/s12666-016-0859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0859-y

Keywords

Navigation