Skip to main content
Log in

Controllable substitutional vanadium doping in wafer-scale molybdenum disulfide films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Substitutional atomic doping of transition metal dichalcogenides (TMDs) in the chemical vapor deposition (CVD) process is a promising and effective strategy for modifying their physicochemical properties. However, the conventional CVD method only allows narrow-range modulation of the dopant concentration owing to the low reactivity of the precursors. Moreover, the growth of wafer-scale monolayer TMD films with high dopant concentrations is much more challenging. Herein, we report a facile doping approach based on liquid precursor-mediated CVD process for achieving high vanadium (V) doping in the MoS2 lattice with excellent doping uniformity and stability. The lateral growth of the host MoS2 lattice and the reactivity of the V precursor were simultaneously improved by introducing an alkali metal halide as a reaction promoter. The metal halide promoter enabled the wafer-scale synthesis of V-incorporated MoS2 monolayer film with excessively high doping concentrations. The excellent wafer-scale uniformity of the highly V-doped MoS2 film was confirmed through a series of microscopic, spectroscopic, and electrical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, S. S.; Hong, J. H.; Gao, B.; Lin, Y. C.; Lim, H. E.; Lu, X. Y.; Wu, J.; Liu, S.; Tateyama, Y.; Sakuma, Y. et al. Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics. Adv. Sci. 2021, 8, 2004438.

    Article  CAS  Google Scholar 

  2. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    Article  CAS  Google Scholar 

  3. Pham, Y. T. H.; Liu, M. Z.; Jimenez, V. O.; Yu, Z. H.; Kalappattil, V.; Zhang, F.; Wang, K.; Williams, T.; Terrones, M.; Phan, M. H. Tunable ferromagnetism and thermally induced spin flip in vanadium-doped tungsten diselenide monolayers at room temperature. Adv. Mater. 2020, 32, 2003607.

    Article  CAS  Google Scholar 

  4. Zhang, K. H.; Bersch, B. M.; Joshi, J.; Addou, R.; Cormier, C. R.; Zhang, C. X.; Xu, K.; Briggs, N. C.; Wang, K.; Subramanian, S. et al. Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater. 2018, 28, 1706950.

    Article  Google Scholar 

  5. Pham, V. P.; Yeom, G. Y. Recent advances in doping of molybdenum disulfide: Industrial applications and future prospects. Adv. Mater. 2016, 28, 9024–9059.

    Article  CAS  Google Scholar 

  6. Kim, A. R.; Kim, Y.; Nam, J.; Chung, H. S.; Kim, D. J.; Kwon, J. D.; Park, S. W.; Park, J.; Choi, S. Y.; Lee, B. H. et al. Alloyed 2D metal-semiconductor atomic layer junctions. Nano Lett. 2016, 16, 1890–1895.

    Article  CAS  Google Scholar 

  7. Chua, X. J.; Luxa, J.; Eng, A. Y. S.; Tan, S. M.; Sofer, Z.; Pumera, M. Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction. ACS Catal. 2016, 6, 5724–5734.

    Article  CAS  Google Scholar 

  8. Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 2010, 9, 965–974.

    Article  CAS  Google Scholar 

  9. Yun, S. J.; Duong, D. L.; Ha, D. M.; Singh, K.; Phan, T. L.; Choi, W.; Kim, Y. M.; Lee, Y. H. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 2020, 7, 1903076.

    Article  CAS  Google Scholar 

  10. Yin, X. M.; Tang, C. S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A. T. S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115.

    Article  CAS  Google Scholar 

  11. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

    Article  CAS  Google Scholar 

  12. Seo, J.; Kim, Y.; Lee, J.; Son, E.; Jung, M. H.; Kim, Y. M.; Jeong, H. Y.; Lee, G.; Park, H. A single-atom vanadium-doped 2D semiconductor platform for attomolar-level molecular sensing. J. Mater. Chem. A 2022, 10, 13298–13304.

    Article  CAS  Google Scholar 

  13. Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735–9743.

    Article  CAS  Google Scholar 

  14. Lin, Y. C.; Torsi, R.; Geohegan, D. B.; Robinson, J. A.; Xiao, K. Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci. 2021, 8, 2004249.

    Article  CAS  Google Scholar 

  15. Cai, Z. Y.; Lai, Y. J.; Zhao, S. L.; Zhang, R. J.; Tan, J. Y.; Feng, S. M.; Zou, J. Y.; Tang, L.; Lin, J. H.; Liu, B. L. et al. Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides. Natl. Sci. Rev. 2021, 8, nwaa115.

    Article  CAS  Google Scholar 

  16. Zhang, T. Y.; Fujisawa, K.; Zhang, F.; Liu, M. Z.; Lucking, M. C.; Gontijo, R. N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T. et al. Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis. ACS Nano 2020, 14, 4326–4335.

    Article  CAS  Google Scholar 

  17. Qin, Z. Y.; Loh, L.; Wang, J. Y.; Xu, X. M.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J. Z.; Schultz, T. et al. Growth of Nb-doped monolayer WS2 by liquid-phase precursor mixing. ACS Nano 2019, 13, 10768–10775.

    Article  CAS  Google Scholar 

  18. Kim, M.; Seo, J.; Kim, J.; Moon, J. S.; Lee, J.; Kim, J. H.; Kang, J.; Park, H. High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics. ACS Nano 2021, 15, 3038–3046.

    Article  CAS  Google Scholar 

  19. Zhang, F.; Zheng, B. Y.; Sebastian, A.; Olson, D. H.; Liu, M. Z.; Fujisawa, K.; Pham, Y. T. H.; Jimenez, V. O.; Kalappattil, V.; Miao, L. X. et al. Monolayer vanadium-doped tungsten disulfide: A room-temperature dilute magnetic semiconductor. Adv. Sci. 2020, 7, 2001174.

    Article  CAS  Google Scholar 

  20. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    Article  CAS  Google Scholar 

  21. Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

    Article  Google Scholar 

  22. Zou, J. Y.; Cai, Z. Y.; Lai, Y. J.; Tan, J. Y.; Zhang, R. J.; Feng, S. M.; Wang, G.; Lin, J. H.; Liu, B. L.; Cheng, H. M. Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 2021, 15, 7340–7347.

    Article  CAS  Google Scholar 

  23. Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.

    Article  Google Scholar 

  24. Wang, Z. Q.; Zhao, G. X.; Luo, R. C.; Johnson, I.; Kashani, H.; Chen, M. W. Chemical doping induced zone-edge phonon renormalization in single-layer MoS2. Phys. Rev. B 2019, 100, 085401.

    Article  CAS  Google Scholar 

  25. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  26. Tang, L.; Xu, R. Z.; Tan, J. Y.; Luo, Y. T.; Zou, J. Y.; Zhang, Z. T.; Zhang, R. J.; Zhao, Y.; Lin, J. H.; Zou, X. L. et al. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb-doping. Adv. Funct. Mater. 2021, 31, 2006941.

    Article  CAS  Google Scholar 

  27. Seo, J.; Lee, J.; Jeong, G.; Park, H. Site-selective and van der Waals epitaxial growth of rhenium disulfide on graphene. Small 2019, 15, 1804133.

    Google Scholar 

  28. Chen, X.; Park, Y. J.; Kang, M.; Kang, S. K.; Koo, J.; Shinde, S. M.; Shin, J.; Jeon, S.; Park, G.; Yan, Y. et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 2018, 9, 1690.

    Article  Google Scholar 

  29. Roy, T.; Tosun, M.; Kang, J. S.; Sachid, A. B.; Desai, S. B.; Hettick, M.; Hu, C. C.; Javey, A. Field-effect transistors built from all two-dimensional material components. ACS Nano 2014, 8, 6259–6264.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (Nos. 2019R1A2C1009025 and 2022R1A4A2000823) and 2022 research Fund (No. 1.220024.01) of Ulsan National Institute of Science & Technology (UNIST).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong Min Baik or Hyesung Park.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Son, E., Kim, J. et al. Controllable substitutional vanadium doping in wafer-scale molybdenum disulfide films. Nano Res. 16, 3415–3421 (2023). https://doi.org/10.1007/s12274-022-4945-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4945-7

Keywords

Navigation