Skip to main content
Log in

Ultralow-adhesion icephobic surfaces: Combining superhydrophobic and liquid-like properties in the same surface

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a ubiquitous natural phenomenon, ice/frost formation on solid surfaces have adverse effects on many commercial and residential activities. Icephobic surfaces feature low ice adhesion strengths (< 100 kPa) can passively retard ice formation and ease ice removal. Superhydrophobic surfaces and liquid-lubricating surfaces are two prevailing categories of icephobic surfaces. However, their long-term stability is relatively poor, and the ice adhesion strengths are not low enough for passive removal of small ice crystals (e.g., frosts) from the surfaces. Herein, we combine the superhydrophobic and liquid-like properties in one surface to obtain durable icephobic surfaces with extremely low ice adhesion strengths (about 0.035 kPa). Ices and frosts can be removed from the surface under the action of gravity or gas purge. These surfaces are prepared based on surface nanoconical structure and covalently-grafted liquid-like perfluorinated polyether (PFPE) coating, which show synergy effects on suppressing icing and frosting by promoting expulsion of subcooled condensate droplets from the nanotexture and decreasing ice adhesion strengths. The icephobic surfaces show significantly better durability compared to lubricant-impregnated textured surfaces. Our results provide a new avenue to design passive anti-icing/anti-frosting surfaces for a wide range of applications where surfaces are exposed to humid and low-temperature environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golovin, K.; Dhyani, A.; Thouless, M. D.; Tuteja, A. Low-interfacial toughness materials for effective large-scale deicing. Science 2019, 364, 371–375.

    Article  CAS  Google Scholar 

  2. He, Z. Y.; Wu, C. Y.; Hua, M. T.; Wu, S. W.; Wu, D.; Zhu, X. Y.; Wang, J. J.; He, X. M. Bioinspired multifunctional anti-icing hydrogel. Matter 2020, 2, 723–734.

    Article  Google Scholar 

  3. Yang, S. Y.; Wu, C. Y.; Zhao, G. L.; Sun, J.; Yao, X.; Ma, X. H.; Wang, Z. K. Condensation frosting and passive anti-frosting. Cell Rep. Phys. Sci. 2021, 2, 100474.

    Article  Google Scholar 

  4. Kreder, M. J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003.

    Article  CAS  Google Scholar 

  5. Lv, J. Y.; Yao, X.; Zheng, Y. M.; Wang, J. J.; Jiang, L. Antiadhesion organogel materials: From liquid to solid. Adv. Mater. 2017, 29, 1703032.

    Article  Google Scholar 

  6. Wang, G. W.; Guo, Z. G. Liquid infused surfaces with anti-icing properties. Nanoscale 2019, 11, 22615–22635.

    Article  CAS  Google Scholar 

  7. Song, M. J.; Xia, L.; Mao, N.; Deng, S. M. An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil. Appl. Energy 2016, 164, 36–44.

    Article  Google Scholar 

  8. Wang, F.; Liang, C. H.; Zhang, X. S. Research of anti-frosting technology in refrigeration and air conditioning fields: A review. Renewable Sustainable Energy Rev. 2018, 81, 707–722.

    Article  Google Scholar 

  9. Zhang, S. N.; Huang, J. Y.; Cheng, Y.; Yang, H.; Chen, Z.; Lai, Y. K. Bioinspired surfaces with superwettability for anti-icing and ice-phobic application: Concept, mechanism, and design. Small 2017, 13, 1701867.

    Article  Google Scholar 

  10. Lee, S. H.; Seong, M.; Kwak, M. K.; Ko, H.; Kang, M. S.; Park, H. W.; Kang, S. M.; Jeong, H. E. Tunable multimodal drop bouncing dynamics and anti-icing performance of a magnetically responsive hair array. ACS Nano 2018, 12, 10693–10702.

    Article  CAS  Google Scholar 

  11. Wang, F.; Zhuo, Y. Z.; He, Z. W.; Xiao, S. B.; He, J. Y.; Zhang, Z. L. Dynamic anti-icing surfaces (DAIS). Adv. Sci. 2021, 8, 2101163.

    Article  Google Scholar 

  12. Lv, J. Y.; Song, Y. L.; Jiang, L.; Wang, J. J. Bio-inspired strategies for anti-icing. ACS Nano 2014, 8, 3152–3169.

    Article  CAS  Google Scholar 

  13. Yin, X. Y.; Zhang, Y.; Wang, D. A.; Liu, Z. L.; Liu, Y. P.; Pei, X. W.; Yu, B.; Zhou, F. Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance. Adv. Funct. Mater. 2015, 25, 4237–4245.

    Article  CAS  Google Scholar 

  14. Zhuo, Y. Z.; Xiao, S. B.; Amirfazli, A.; He, J. Y.; Zhang, Z. L. Polysiloxane as icephobic materials—The past, present and the future. Chem. Eng. J. 2021, 405, 127088.

    Article  CAS  Google Scholar 

  15. Wang, T.; Zheng, Y. H.; Raji, A. R. O.; Li, Y. L.; Sikkema, W. K. A.; Tour, J. M. Passive anti-icing and active deicing films. ACS Appl. Mater. Interfaces 2016, 8, 14169–14173.

    Article  CAS  Google Scholar 

  16. Mirzanamadi, R.; Hagentoft, C. E.; Johansson, P.; Johnsson, J. Anti-icing of road surfaces using hydronic heating pavement with low temperature. Cold Reg. Sci. Technol. 2018, 145, 106–118.

    Article  Google Scholar 

  17. Zhuo, Y. Z.; Chen, J. H.; Xiao, S. B.; Li, T.; Wang, F.; He, J. Y.; Zhang, Z. L. Gels as emerging anti-icing materials: A mini review. Mater. Horiz. 2021, 8, 3266–3280.

    Article  CAS  Google Scholar 

  18. Niu, W. W.; Chen, G. Y.; Xu, H. L.; Liu, X. K.; Sun, J. Q. Highly transparent and self-healable solar thermal anti-/deicing surfaces: When ultrathin MXene multilayers marry a solid slippery self-cleaning coating. Adv. Mater. 2022, 34, 2108232.

    Article  CAS  Google Scholar 

  19. Wang, L. Z.; Tian, Z.; Jiang, G. C.; Luo, X.; Chen, C. H.; Hu, X. Y.; Zhang, H. J.; Zhong, M. L. Spontaneous dewetting transitions of droplets during icing & melting cycle. Nat. Commun. 2022, 13, 378.

    Article  CAS  Google Scholar 

  20. Zheng, W. W.; Teng, L.; Lai, Y. K.; Zhu, T. X.; Li, S. H.; Wu, X. W.; Cai, W. L.; Chen, Z.; Huang, J. Y. Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing. Chem. Eng. J. 2022, 427, 130922.

    Article  CAS  Google Scholar 

  21. Vazirinasab, E.; Maghsoudi, K.; Momen, G.; Jafari, R. On the icephobicity of damage-tolerant superhydrophobic bulk nanocomposites. Soft Matter 2022, 18, 412–424.

    Article  CAS  Google Scholar 

  22. Mishchenko, L.; Hatton, B.; Bahadur, V.; Taylor, J. A.; Krupenkin, T.; Aizenberg, J. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 2010, 4, 7699–7707.

    Article  CAS  Google Scholar 

  23. Oberli, L.; Caruso, D.; Hall, C.; Fabretto, M.; Murphy, P. J.; Evans, D. Condensation and freezing of droplets on superhydrophobic surfaces. Adv. Colloid Interface Sci. 2014, 210, 47–57.

    Article  CAS  Google Scholar 

  24. Wang, R.; Wu, F. F.; Yu, F. F.; Zhu, J.; Gao, X. F.; Jiang, L. Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling. Nano Res. 2021, 14, 1429–1434.

    Article  CAS  Google Scholar 

  25. Shen, Y. Z.; Tao, J.; Tao, H. J.; Chen, S. L.; Pan, L.; Wang, T. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: Ice nucleation and growth. Langmuir 2015, 31, 10799–10806.

    Article  CAS  Google Scholar 

  26. Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang, W. S.; Deng, T. Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 2009, 95, 094101.

    Article  Google Scholar 

  27. Jung, S.; Tiwari, M. K.; Doan, N. V.; Poulikakos, D. Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 2012, 3, 615.

    Article  Google Scholar 

  28. Boreyko, J. B.; Collier, C. P. Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS Nano 2013, 7, 1618–1627.

    Article  CAS  Google Scholar 

  29. Wang, L.; Gong, Q. H.; Zhan, S. H.; Jiang, L.; Zheng, Y. M. Robust anti-icing performance of a flexible superhydrophobic surface. Adv. Mater. 2016, 28, 7729–7735.

    Article  CAS  Google Scholar 

  30. Kim, M. H.; Kim, H.; Lee, K. S.; Kim, D. R. Frosting characteristics on hydrophobic and superhydrophobic surfaces: A review. Energy Convers. Manag. 2017, 138, 1–11.

    Article  Google Scholar 

  31. Nosonovsky, M.; Hejazi, V. Why superhydrophobic surfaces are not always icephobic. ACS Nano 2012, 6, 8488–8491.

    Article  CAS  Google Scholar 

  32. Boinovich, L. B.; Emelyanenko, A. M.; Emelyanenko, K. A.; Modin, E. B. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings. ACS Nano 2019, 13, 4335–4346.

    Article  CAS  Google Scholar 

  33. Vercillo, V.; Tonnicchia, S.; Romano, J. M.; García-Girón, A.; Aguilar-Morales, A. I.; Alamri, S.; Dimov, S. S.; Kunze, T.; Lasagni, A. F.; Bonaccurso, E. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications. Adv. Funct. Mater. 2020, 30, 1910268.

    Article  CAS  Google Scholar 

  34. Cohen, N.; Dotan, A.; Dodiuk, H.; Kenig, S. Thermomechanical mechanisms of reducing ice adhesion on superhydrophobic surfaces. Langmuir 2016, 32, 9664–9675.

    Article  CAS  Google Scholar 

  35. Chen, J.; Liu, J.; He, M.; Li, K. Y.; Cui, D. P.; Zhang, Q. L.; Zeng, X. P.; Zhang, Y. F.; Wang, J. J.; Song, Y. L. Superhydrophobic surfaces cannot reduce ice adhesion. Appl. Phys. Lett. 2012, 101, 111603.

    Article  Google Scholar 

  36. Kulinich, S. A.; Farhadi, S.; Nose, K.; Du, X. W. Superhydrophobic surfaces: Are they really ice-repellent? Langmuir 2011, 27, 25–29.

    Article  CAS  Google Scholar 

  37. Maitra, T.; Jung, S.; Giger, M. E.; Kandrical, V.; Ruesch, T.; Poulikakos, D. Superhydrophobicity vs. ice adhesion:The quandary of robust icephobic surface design. Adv. Mater. Interfaces 2015, 2, 1500330.

    Article  Google Scholar 

  38. Jung, S.; Dorrestijn, M.; Raps, D.; Das, A.; Megaridis, C. M.; Poulikakos, D. Are superhydrophobic surfaces best for icephobicity? Langmuir 2011, 27, 3059–3066.

    Article  CAS  Google Scholar 

  39. Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447.

    Article  CAS  Google Scholar 

  40. Hauer, L.; Wong, W. S. Y.; Donadei, V.; Hegner, K. I.; Kondic, L.; Vollmer, D. How frost forms and grows on lubricated micro- and nanostructured surfaces. ACS Nano 2021, 15, 4658–4668.

    Article  CAS  Google Scholar 

  41. Irajizad, P.; Hasnain, M.; Farokhnia, N.; Sajadi, S. M.; Ghasemi, H. Magnetic slippery extreme icephobic surfaces. Nat. Commun. 2016, 7, 13395.

    Article  CAS  Google Scholar 

  42. Han, G.; Nguyen, T. B.; Park, S.; Jung, Y.; Lee, J.; Lim, H. Moth-eye mimicking solid slippery glass surface with icephobicity, transparency, and self-healing. ACS Nano 2020, 14, 10198–10209.

    Article  CAS  Google Scholar 

  43. Villegas, M.; Zhang, Y. X.; Jarad, N. A.; Soleymani, L.; Didar, T. F. Liquid-infused surfaces: A review of theory, design, and applications. ACS Nano 2019, 13, 8517–8536.

    Article  CAS  Google Scholar 

  44. Urata, C.; Hönes, R.; Sato, T.; Kakiuchida, H.; Matsuo, Y.; Hozumi, A. Textured organogel films showing unusual thermoresponsive dewetting, icephobic, and optical properties. Adv. Mater. Interfaces 2019, 6, 1801358.

    Article  Google Scholar 

  45. Zhuo, Y. Z.; Xiao, S. B.; Håkonsen, V.; He, J. Y.; Zhang, Z. L. Anti-icing ionogel surfaces: Inhibiting ice nucleation, growth, and adhesion. ACS Materials Lett. 2020, 2, 616–623.

    Article  CAS  Google Scholar 

  46. Li, T.; nmnez-Ibanez, P. F.; Håkonsen, V.; Wu, J. Y.; Xu, K.; Zhuo, Y. Z.; Luo, S. H.; He, J. Y.; Zhang, Z. L. Self-deicing electrolyte hydrogel surfaces with Pa-level ice adhesion and durable antifreezing/antifrost performance. ACS Appl. Mater. Interfaces 2020, 12, 35572–35578.

    Article  CAS  Google Scholar 

  47. Shen, J. D.; Du, P.; Zhou, B. B.; Zhang, G. B.; Tang, X. X.; Pan, J.; Li, B.; Zhang, J. Y.; Lu, J.; Li, Y. Y. An anti-freezing biomineral hydrogel of high strain sensitivity for artificial skin applications. Nano Res. 2022, 15, 6655–6661.

    Article  CAS  Google Scholar 

  48. Lu, Y.; Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Ren, Y. F.; Zhao, W. L.; Wang, Q.; Sun, C. C.; Wang, W. J.; Dong, X. C. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 2022, 15, 4421–4430.

    Article  CAS  Google Scholar 

  49. Kim, P.; Wong, T. S.; Alvarenga, J.; Kreder, M. J.; Adorno-Martinez, W. E.; Aizenberg, J. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 2012, 6, 6569–6577.

    Article  CAS  Google Scholar 

  50. Li, J. S.; Ueda, E.; Paulssen, D.; Levkin, P. A. Slippery lubricant-infused surfaces: Properties and emerging applications. Adv. Funct. Mater. 2019, 29, 1802317.

    Article  Google Scholar 

  51. Dong, Z. Q.; Schumann, M. F.; Hokkanen, M. J.; Chang, B.; Welle, A.; Zhou, Q.; Ras, R. H. A.; Xu, Z. L.; Wegener, M.; Levkin, P. A. Superoleophobic slippery lubricant-infused surfaces: Combining two extremes in the same surface. Adv. Mater. 2018, 30, 1803890.

    Article  Google Scholar 

  52. Ozbay, S.; Yuceel, C.; Erbil, H. Y. Improved icephobic properties on surfaces with a hydrophilic lubricating liquid. ACS Appl. Mater. Interfaces 2015, 7, 22067–22077.

    Article  CAS  Google Scholar 

  53. Beemer, D. L.; Wang, W.; Kota, A. K. Durable gels with ultra-low adhesion to ice. J. Mater. Chem. A 2016, 4, 18253–18258.

    Article  CAS  Google Scholar 

  54. Zheng, H. L.; Liu, G. J.; Nienhaus, B. B.; Buddingh, J. V. Ice-shedding polymer coatings with high hardness but low ice adhesion. ACS Appl. Mater. Interfaces 2022, 14, 6071–6082.

    Article  CAS  Google Scholar 

  55. Huang, S. L.; Li, J.; Liu, L.; Zhou, L. D.; Tian, X. L. Lossless fast drop self-transport on anisotropic omniphobic surfaces: Origin and elimination of microscopic liquid residue. Adv. Mater. 2019, 31, 1901417.

    Article  Google Scholar 

  56. Zhang, L.; Guo, Z. Q.; Sarma, J.; Zhao, W. W.; Dai, X. M. Gradient quasi-liquid surface enabled self-propulsion of highly wetting liquids. Adv. Funct. Mater. 2021, 31, 2008614.

    Article  CAS  Google Scholar 

  57. Wang, L. M.; McCarthy, T. J. Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency. Angew. Chem., Int. Ed. 2016, 55, 244–248.

    Article  CAS  Google Scholar 

  58. Zhao, X. X.; Khatir, B.; Mirshahidi, K.; Yu, K.; Kizhakkedathu, J. N.; Golovin, K. Macroscopic evidence of the liquidlike nature of nanoscale polydimethylsiloxane brushes. ACS Nano 2021, 15, 13559–13567.

    Article  CAS  Google Scholar 

  59. Zhang, L.; Guo, Z. Q.; Sarma, J.; Dai, X. M. Passive removal of highly wetting liquids and ice on quasi-liquid surfaces. ACS Appl. Mater. Interfaces 2020, 12, 20084–20095.

    Article  CAS  Google Scholar 

  60. Tian, J.; Zhu, J.; Guo, H. Y.; Li, J.; Feng, X. Q.; Gao, X. F. Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles. J. Phys. Chem. Lett. 2014, 5, 2084–2088.

    Article  CAS  Google Scholar 

  61. Gong, X. J.; Gao, X. F.; Jiang, L. Recent progress in bionic condensate microdrop self-propelling surfaces. Adv. Mater. 2017, 29, 1703002.

    Article  Google Scholar 

  62. Lafuma, A.; Quéré, D. Superhydrophobic states. Nat. Mater. 2003, 2, 457–460.

    Article  CAS  Google Scholar 

  63. Sarshar, M. A.; Song, D.; Swarctz, C.; Lee, J.; Choi, C. H. Anti-icing or deicing: Icephobicities of superhydrophobic surfaces with hierarchical structures. Langmuir 2018, 34, 13821–13827.

    Article  CAS  Google Scholar 

  64. Pan, R.; Zhang, H. J.; Zhong, M. L. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication. ACS Appl. Mater. Interfaces 2021, 13, 1743–1753.

    Article  CAS  Google Scholar 

  65. Wang, P.; Li, Z. Q.; Xie, Q.; Duan, W.; Zhang, X. C.; Han, H. L. A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength. J. Bionic Eng. 2021, 18, 55–64.

    Article  Google Scholar 

  66. Lo, T. N. H.; Lee, J.; Hwang, H. S.; Park, I. Nanoscale coatings derived from fluoroalkyl and PDMS alkoxysilanes on rough aluminum surfaces for improved durability and anti-icing properties. ACS Appl. Nano Mater. 2021, 4, 7493–7501.

    Article  CAS  Google Scholar 

  67. Shen, Y. Z.; Wu, Y.; Tao, J.; Zhu, C. L.; Chen, H. F.; Wu, Z. W.; Xie, Y. H. Spraying fabrication of durable and transparent coatings for anti-icing application: Dynamic water repellency, icing delay, and ice adhesion. ACS Appl. Mater. Interfaces 2019, 11, 3590–3598.

    Article  CAS  Google Scholar 

  68. Gao, J.; Zhang, Y. F.; Wei, W.; Yin, Y.; Liu, M. H.; Guo, H.; Zheng, C. B.; Deng, P. Y. Liquid-infused micro-nanostructured MOF coatings (LIMNSMCs) with high anti-icing performance. ACS Appl. Mater. Interfaces 2019, 11, 47545–47552.

    Article  CAS  Google Scholar 

  69. Juuti, P.; Haapanen, J.; Stenroos, C.; Niemelä-Anttonen, H.; Harra, J.; Koivuluoto, H.; Teisala, H.; Lahti, J.; Tuominen, M.; Kuusipalo, J. et al. Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate. Appl. Phys. Lett. 2017, 110, 161603.

    Article  Google Scholar 

  70. Liu, C.; Li, Y. L.; Lu, C. G.; Liu, Y.; Feng, S. L.; Liu, Y. H. Robust slippery liquid-infused porous network surfaces for enhanced anti-icing/deicing performance. ACS Appl. Mater. Interfaces 2020, 12, 25471–25477.

    Article  CAS  Google Scholar 

  71. Urata, C.; Dunderdale, G. J.; England, M. W.; Hozumi, A. Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices. J. Mater. Chem. A 2015, 3, 12626–12630.

    Article  CAS  Google Scholar 

  72. Wang, Y. L.; Yao, X.; Chen, J.; He, Z. Y.; Liu, J.; Li, Q. Y.; Wang, J. J.; Jiang, L. Organogel as durable anti-icing coatings. Sci. China Mater. 2015, 58, 559–565.

    Article  CAS  Google Scholar 

  73. Urata, C.; Nagashima, H.; Hatton, B. D.; Hozumi, A. Transparent organogel films showing extremely efficient and durable anti-icing performance. ACS Appl. Mater. Interfaces 2021, 13, 28925–28937.

    Article  CAS  Google Scholar 

  74. Yu, Y. N.; Jin, B. Y.; Jamil, M. I.; Cheng, D. G.; Zhang, Q. H.; Zhan, X. L.; Chen, F. Q. Highly stable amphiphilic organogel with exceptional anti-icing performance. ACS Appl. Mater. Interfaces 2019, 11, 12838–12845.

    Article  CAS  Google Scholar 

  75. Golovin, K.; Kobaku, S. P. R.; Lee, D. H.; DiLoreto, E. T.; Mabry, J. M.; Tuteja, A. Designing durable icephobic surfaces. Sci. Adv. 2016, 2, e1501496.

    Article  Google Scholar 

  76. He, Z. W.; Xiao, S. B.; Gao, H. J.; He, J. Y.; Zhang, Z. L. Multiscale crack initiator promoted super-low ice adhesion surfaces. Soft Matter 2017, 13, 6562–6568.

    Article  CAS  Google Scholar 

  77. Xu, Q.; Li, J.; Tian, J.; Zhu, J.; Gao, X. F. Energy-effective frost-free coatings based on superhydrophobic aligned nanocones. ACS Appl. Mater. Interfaces 2014, 6, 8976–8980.

    Article  CAS  Google Scholar 

  78. Wang, R.; Wu, F. F.; Xing, D. D.; Yu, F. F.; Gao, X. F. Density maximization of one-step electrodeposited copper nanocones and dropwise condensation heat-transfer performance evaluation. ACS Appl. Mater. Interfaces 2020, 12, 24512–24520.

    Article  CAS  Google Scholar 

  79. Zhu, J.; Luo, Y. T.; Tian, J.; Li, J.; Gao, X. F. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance. ACS Appl. Mater. Interfaces 2015, 7, 10660–10665.

    Article  CAS  Google Scholar 

  80. Lecointre, P.; Laney, S.; Michalska, M.; Li, T.; Tanguy, A.; Papakonstantinou, I.; Quéré, D. Unique and universal dew-repellency of nanocones. Nat. Commun. 2021, 12, 3458.

    Article  CAS  Google Scholar 

  81. Mouterde, T.; Lehoucq, G.; Xavier, S.; Checco, A.; Black, C. T.; Rahman, A.; Midavaine, T.; Clanet, C.; Quéré, D. Antifogging abilities of model nanotextures. Nat. Mater. 2017, 16, 658–663.

    Article  CAS  Google Scholar 

  82. Liu, Y. H.; Moevius, L.; Xu, X. P.; Qian, T. Z.; Yeomans, J. M.; Wang, Z. K. Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 2014, 10, 515–519.

    Article  CAS  Google Scholar 

  83. Li, J.; Luo, Y. T.; Zhu, J.; Li, H.; Gao, X. F. Subcooled-water nonstickiness of condensate microdrop self-propelling nanosurfaces. ACS Appl. Mater. Interfaces 2015, 7, 26391–26395.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from National Natural Science Foundation of China (Nos. 22072185, 12072381, 21872176, and 21805315), Pearl River Talents Program (No. 2017GC010671), Natural Science Foundation of Guangdong Province (No. 2019A1515012030), and Science and Technology Innovation Project of Guangzhou (No. 202102020263).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shilin Huang or Xuelin Tian.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, M., Guo, R., Fan, Y. et al. Ultralow-adhesion icephobic surfaces: Combining superhydrophobic and liquid-like properties in the same surface. Nano Res. 16, 589–598 (2023). https://doi.org/10.1007/s12274-022-4746-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4746-z

Keywords

Navigation