Skip to main content
Log in

An anti-freezing biomineral hydrogel of high strain sensitivity for artificial skin applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mineral hydrogels have caught a lot of attention for their strong competency as artificial skin-like materials. Nonetheless, it remains a great difficulty in fulfilling in one hydrogel system a range of key functionalities that are needed for practical artificial skin applications, i.e., to be biocompatible, strain-sensitive, ion-conductive, elastic and robust, anti-swelling, and anti-freezing. Here we present a such type of versatile hydrogel that is not only capable to deliver all the above-mentioned key functionalities but also highly stable. This novel hydrogel is constructed by introducing a gelatinous and amorphous multi-ionic biomineral (denoted as Mg-ACCP, containing Mg2+, Ca2+, CO32−, and PO43−) into the network of biocompatible polyvinyl alcohol (PVA) and sodium alginate (SA). The presence of Mg2+ and PO43− in this hydrogel helps prohibit the crystallization of the biominerals, leading to significantly improved stability. The hydrogel thus obtained delivers excellent mechanical performance due to the chelation between the mineral ions and the organic matrix, and high sensitivity even to subtle pressure and strain applied, such as slight finger bending and gentle tapping. Furthermore, the novel hydrogel features high ionic conductivity, high resistance to swelling, and extraordinary anti-freezing property, holding great promise for applications in different practical scenarios, particularly in aqueous or cold environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, X. T.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Hybrid materials from ultrahigh-inorganic-content mineral plastic hydrogels: Arbitrarily shapeable, strong, and tough. Adv. Funct. Mater. 2020, 30, 1910425.

    Article  CAS  Google Scholar 

  2. Yan, N. N.; Zheng, Z. Y.; Liu, Y. L.; Jiang, X. Z.; Wu, J. M.; Feng, M.; Xu, L.; Guan, Q. B.; Li, H. T. Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials. Nano Res. 2021, 15, 1383–1392.

    Article  Google Scholar 

  3. Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    Article  CAS  Google Scholar 

  4. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  5. Xu, X. W.; Chen, Y. C.; He, P.; Wang, S.; Ling, K.; Liu, L. H.; Lei, P. F.; Huang, X. J.; Zhao, H.; Cao, J. Y. et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021, 14, 2875–2883.

    Article  CAS  Google Scholar 

  6. Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

    Article  CAS  Google Scholar 

  7. Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

    Article  CAS  Google Scholar 

  8. Meyers, M. A.; McKittrick, J.; Chen, P. Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773–779.

    Article  CAS  Google Scholar 

  9. Meldrum, F. C.; Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008, 108, 4332–4432.

    Article  CAS  Google Scholar 

  10. Gal, A.; Habraken, W.; Gur, D.; Fratzl, P.; Weiner, S.; Addadi, L. Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel. Angew. Chem., Int. Ed. 2013, 52, 4867–4870.

    Article  CAS  Google Scholar 

  11. Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

    Article  Google Scholar 

  12. Oaki, Y.; Kajiyama, S.; Nishimura, T.; Imai, H.; Kato, T. Nanosegregated amorphous composites of calcium carbonate and an organic polymer. Adv. Mater. 2008, 20, 3633–3637.

    Article  CAS  Google Scholar 

  13. Addadi, L.; Raz, S.; Weiner, S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 2003, 15, 959–970.

    Article  CAS  Google Scholar 

  14. Politi, Y.; Arad, T.; Klein, E.; Weiner, S.; Addadi, L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 2004, 306, 1161–1164.

    Article  CAS  Google Scholar 

  15. Aizenberg, J.; Lambert, G.; Weiner, S.; Addadi, L. Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton. J. Am. Chem. Soc. 2002, 124, 32–39.

    Article  CAS  Google Scholar 

  16. Albéric, M.; Bertinetti, L.; Zou, Z. Y.; Fratzl, P.; Habraken, W.; Politi, Y. The crystallization of amorphous calcium carbonate is kinetically governed by ion impurities and water. Adv. Sci. 2018, 5, 1701000.

    Article  Google Scholar 

  17. Kanasan, N.; Adzila, S.; Koh, C. T.; Rahman, H. A.; Panerselvan, G. Effects of magnesium doping on the properties of hydroxyapatite/sodium alginate biocomposite. Adv. Appl. Ceram. 2019, 118, 381–386.

    Article  CAS  Google Scholar 

  18. Finnemore, A.; Cunha, P.; Shean, T.; Vignolini, S.; Guldin, S.; Oyen, M.; Steiner, U. Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 2012, 3, 966.

    Article  Google Scholar 

  19. Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    Article  CAS  Google Scholar 

  20. Sun, S. T.; Mao, L. B.; Lei, Z. Y.; Yu, S. H.; Cölfen, H. Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for “mineral plastics”. Angew. Chem., Int. Ed. 2016, 55, 11765–11769.

    Article  CAS  Google Scholar 

  21. Al-Sawalmih, A.; Li, C. H.; Siegel, S.; Fratzl, P.; Paris, O. On the stability of amorphous minerals in lobster cuticle. Adv. Mater. 2009, 21, 4011–4015.

    Article  CAS  Google Scholar 

  22. Ye, H.; Huang, J.; Xu, J. J.; Kodiweera, N. K. A. C.; Jayakody, J. R. P.; Greenbaum, S. G. New membranes based on ionic liquids for PEM fuel cells at elevated temperatures. J. Power Sources 2008, 178, 651–660.

    Article  CAS  Google Scholar 

  23. Topuz, F.; Henke, A.; Richtering, W.; Groll, J. Magnesium ions and alginate do form hydrogels: A rheological study. Soft Matter 2012, 8, 4877–4881.

    Article  CAS  Google Scholar 

  24. Wang, Y. J.; Yang, X. J.; Li, H. Y.; Tu, W. Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Polym. Degrad. Stabil. 2006, 91, 2408–2414.

    Article  CAS  Google Scholar 

  25. Bhajantri, R. F.; Ravindrachary, V.; Harisha, A.; Crasta, V.; Nayak, S. P.; Poojary, B. Microstructural studies on BaCl2 doped poly(vinyl alcohol). Polymer 2006, 47, 3591–3598.

    Article  CAS  Google Scholar 

  26. Guo, S. H.; Li, X. H.; Li, J.; Wei, B. Q. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 2021, 12, 1343.

    Article  CAS  Google Scholar 

  27. Guo, S. H.; Li, Y. H.; Tang, S. W.; Zhang, Y. Y.; Li, X. H.; Sobrido, A. J.; Titirici, M. M.; Wei, B. Q. Monitoring hydrogen evolution reaction intermediates of transition metal dichalcogenides via operando Raman spectroscopy. Adv. Funct. Mater. 2020, 30, 2003035.

    Article  CAS  Google Scholar 

  28. Fan, L. H.; Du, Y. M.; Huang, R. H.; Wang, Q.; Wang, X. H.; Zhang, L. N. Preparation and characterization of alginate/gelatin blend fibers. J. Appl. Polym. Sci. 2005, 96, 1625–1629.

    Article  CAS  Google Scholar 

  29. Zhou, B. B.; Li, S. F.; Tang, X. H.; Li, P.; Cao, X. M.; Yu, B. R.; Yang, L. B.; Liu, J. H. Real-time monitoring of plasmon-induced proton transfer of hypoxanthine in serum. Nanoscale 2017, 9, 12307–12310.

    Article  CAS  Google Scholar 

  30. Fabryanty, R.; Valencia, C.; Soetaredjo, F. E.; Putro, J. N.; Santoso, S. P.; Kurniawan, A.; Ju, Y. H.; Ismadji, S. Removal of crystal violet dye by adsorption using bentonite — alginate composite. J. Environ. Chem. Eng. 2017, 5, 5677–5687.

    Article  CAS  Google Scholar 

  31. Zhou, B. B.; Mao, M.; Cao, X. M.; Ge, M. H.; Tang, X. H.; Li, S. F.; Lin, D. Y.; Yang, L. B.; Liu, J. H. Amphiphilic functionalized acupuncture needle as SERS sensor for in situ multiphase detection. Anal. Chem. 2018, 90, 3826–3832.

    Article  CAS  Google Scholar 

  32. Xue, X.; He, Z. Z.; Liu, J. Detection of water-ice phase transition based on Raman spectrum. J. Raman Spectrosc. 2013, 44, 1045–1048.

    Article  CAS  Google Scholar 

  33. Xu, L. J.; Wang, C.; Cui, Y.; Li, A. L.; Qiao, Y.; Qiu, D. Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Sci. Adv. 2019, 5, eaau3442.

    Article  Google Scholar 

  34. Yang, Y. Y.; Wang, X.; Yang, F.; Wang, L. N.; Wu, D. C. Highly elastic and ultratough hybrid ionic-covalent hydrogels with tunable structures and mechanics. Adv. Mater. 2018, 30, 1707071.

    Article  Google Scholar 

  35. Zhao, L. Z.; Zhou, C. H.; Wang, J.; Tong, D. S.; Yu, W. H.; Wang, H. Recent advances in clay mineral-containing nanocomposite hydrogels. Soft Matter 2015, 11, 9229–9246.

    Article  CAS  Google Scholar 

  36. Yeo, J. C.; Yu, J. H.; Koh, Z. M.; Wang, Z. P.; Lim, C. T. Wearable tactile sensor based on flexible microfluidics. Lab Chip 2016, 16, 3244–3250.

    Article  CAS  Google Scholar 

  37. Ge, G.; Zhang, Y. Z.; Shao, J. J.; Wang, W. J.; Si, W. L.; Huang, W.; Dong, X. C. Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 2018, 28, 1802576.

    Article  Google Scholar 

  38. Wang, X. D.; Zhang, H. L.; Dong, L.; Han, X.; Du, W. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 2016, 28, 2896–2903.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project: HZQB-KCZYB-2020030, Health@InnoHK (Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), Innovation and Technology Commission, the Government of the Hong Kong Special Administrative Region of the People’s Republic of China, the Innovation and Technology Commission of HKSAR through Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), the City University of Hong Kong (No. 7005077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Lu or Yang Yang Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Du, P., Zhou, B. et al. An anti-freezing biomineral hydrogel of high strain sensitivity for artificial skin applications. Nano Res. 15, 6655–6661 (2022). https://doi.org/10.1007/s12274-022-4213-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4213-x

Keywords

Navigation