Skip to main content
Log in

Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterogenized phthalocyanine-based molecular catalysts are the ideal electrocatalytic platforms for CO2 reduction reaction (CO2RR) because of their well-defined structures and potential properties. In addition to the pursuit of catalytic performances at industrial potentials, it is equally important to explore experimental rules and design considerations behind activity and selectivity. Herein, we successfully developed a series of nickel phthalocyanines (NiPcs) with different alkyl chains immobilized on multi-walled carbon nanotubes (CNT) to unveil the structure—performance relationship for electrocatalytic CO2RR in neutral electrolyte. Interestingly, a volcano-type trend was found between the activity for CO2-to-CO conversion and alkyl chain lengths of NiPcs on CNT. Experimental results further indicate that their electrocatalytic CO2RR activities are highly related to the molecular dispersion and the heterointerfacial charge transfer capability adjusted by the alkyl chains. Particularly, the optimized electrocatalyst via accurate clipping at the molecular level exhibits an ultrahigh activity with Faradaic efficiency of CO up to 99.52%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, C. H.; Li, S. Y.; Zhang, Z. C.; Wang, H. Q.; Liu, H. L.; Jiao, F.; Guo, Z. G.; Zhang, X. T.; Hu, W. P. Organic—inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.

    Article  CAS  Google Scholar 

  2. Zhu, H. J.; Lu, M.; Wang, Y. R.; Yao, S. J.; Zhang, M.; Kan, Y. H.; Liu, J.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat. Commun. 2020, 11, 497.

    Article  CAS  Google Scholar 

  3. Tackett, B. M.; Gomez, E.; Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2019, 2, 381–386.

    Article  CAS  Google Scholar 

  4. Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it. Joule 2018, 2, 825–832.

    Article  CAS  Google Scholar 

  5. Han, S. G.; Ma, D. D.; Zhu, Q. L. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction. Small Methods 2021, 5, 2100102.

    Article  CAS  Google Scholar 

  6. Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206–3211.

    Article  CAS  Google Scholar 

  7. Xu, H. P.; Rebollar, D.; He, H. Y.; Chong, L. N.; Liu, Y. Z.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.

    Article  CAS  Google Scholar 

  8. Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

    Article  CAS  Google Scholar 

  9. Chen, J. Y.; Wang, T. T.; Wang, X. Y.; Yang, B.; Sang, X. H.; Zheng, S. X.; Yao, S. Y.; Li, Z. J.; Zhang, Q. H.; Lei, L. C. et al. Promoting electrochemical CO2 reduction via boosting activation of adsorbed intermediates on iron single-atom catalyst. Adv. Funct. Mater. 2022, 32, 2110174.

    Article  CAS  Google Scholar 

  10. Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dualatom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

    Article  CAS  Google Scholar 

  11. Han, S. G.; Ma, D. D.; Zhou, S. H.; Zhang, K. X.; Wei, W. B.; Du, Y. H.; Wu, X. T.; Xu, Q.; Zou, R. Q.; Zhu, Q. L. Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl. Catal. B:Environ. 2021, 283, 119591.

    Article  CAS  Google Scholar 

  12. Zhang, Y. K.; Wang, X. Y.; Zheng, S. X.; Yang, B.; Li, Z. J.; Lu, J. G.; Zhang, Q. H.; Adli, N. M.; Lei, L. C.; Wu, G. et al. Hierarchical cross-linked carbon aerogels with transition metal-nitrogen sites for highly efficient industrial-level CO2 electroreduction. Adv. Funct. Mater. 2021, 31, 2104377.

    Article  CAS  Google Scholar 

  13. Zou, Y. Q.; Wang, S. Y. An investigation of active sites for electrochemical CO2 reduction reactions: From in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.

    Article  CAS  Google Scholar 

  14. Chen, J. Y.; Li, Z. J.; Wang, X. Y.; Sang, X. H.; Zheng, S. X.; Liu, S. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Dai, L. M. et al. Promoting CO2 electroreduction kinetics on atomically dispersed monovalent ZnI sites by rationally engineering proton-feeding centers. Angew. Chem., Int. Ed. 2022, 61, e202111683.

    CAS  Google Scholar 

  15. Chen, Z. P.; Zhang, X. X.; Liu, W.; Jiao, M. Y.; Mou, K. W.; Zhang, X. P.; Liu, L. C. Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level. Energy Environ. Sci. 2021, 14, 2349–2356.

    Article  CAS  Google Scholar 

  16. Wei, S. T.; Zou, H. Y.; Rong, W. F.; Zhang, F. X.; Ji, Y. F.; Duan, L. L. Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in a wide operating potential window. Appl. Catal. B:Environ. 2021, 284, 119739.

    Article  CAS  Google Scholar 

  17. Lu, X. L.; Rong, X.; Zhang, C.; Lu, T. B. Carbon-based single-atom catalysts for CO2 electroreduction: Progress and optimization strategies. J. Mater. Chem. A 2020, 8, 10695–10708.

    Article  CAS  Google Scholar 

  18. Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.

    Article  Google Scholar 

  19. Zheng, W. Z.; Wang, Y.; Shuai, L.; Wang, X. Y.; He, F.; Lei, C. J.; Li, Z. J.; Yang, B.; Lei, L. C.; Yuan, C. et al. Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv. Funct. Mater. 2021, 31, 2008146.

    Article  CAS  Google Scholar 

  20. Lu, Y. X.; Zou, Y. Q.; Zhao, W. X.; Wang, M. X.; Li, C. Y.; Liu, S. M.; Wang, S. Y. Nanostructured electrocatalysts for electrochemical carboxylation with CO2. Nano Select 2020, 1, 135–151.

    Article  Google Scholar 

  21. Luo, Y. F.; Xia, C. B.; Abulizi, R.; Feng, Q. J.; Liu, W. P.; Zhang, A. H. Electrocatalysis of CO2 reduction on nano silver cathode in ionic liquid BMIMBF4: Synthesis of dimethylcarbonate. Int. J. Electrochem. Sci. 2017, 12, 4828–4834.

    Article  CAS  Google Scholar 

  22. Zhang, X. Y.; Lin, R. J.; Meng, X. M.; Li, W.; Chen, F. S.; Hou, J. W. Iron phthalocyanine/two-dimensional metal-organic framework composite nanosheets for enhanced alkaline hydrogen evolution. Inorg. Chem. 2021, 60, 9987–9995.

    Article  CAS  Google Scholar 

  23. Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. A.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem., Int. Ed. 2018, 57, 8614–8618.

    Article  CAS  Google Scholar 

  24. Morlanés, N.; Takanabe, K.; Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 2016, 6, 3092–3095.

    Article  Google Scholar 

  25. Karapinar, D.; Zitolo, A.; Huan, T. N.; Zanna, S.; Taverna, D.; Tizei, L. H. G.; Giaume, D.; Marcus, P.; Mougel, V.; Fontecave, M. Carbon-nanotube-supported copper polyphthalocyanine for efficient and selective electrocatalytic CO2 reduction to CO. ChemSusChem 2020, 13, 173–179.

    Article  CAS  Google Scholar 

  26. Guo, J.; Yan, X. M.; Liu, Q.; Li, Q.; Xu, X.; Kang, L. T.; Cao, Z. M.; Chai, G. L.; Chen, J.; Wang, Y. B. et al. The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 2018, 46, 347–355.

    Article  CAS  Google Scholar 

  27. Yan, X. M.; Xu, X.; Zhong, Z.; Liu, J. J.; Tian, X. M.; Kang, L. T.; Yao, J. N. The effect of oxygen content of carbon nanotubes on the catalytic activity of carbon-based iron phthalocyanine for oxygen reduction reaction. Electrochim. Acta 2018, 281, 562–570.

    Article  CAS  Google Scholar 

  28. Yang, S. X.; Yu, Y. H.; Gao, X. J.; Zhang, Z. P.; Wang, F. Recent advances in electrocatalysis with phthalocyanines. Chem. Soc. Rev. 2021, 50, 12985–13011.

    Article  CAS  Google Scholar 

  29. Ren, X. Y.; Liu, S.; Li, H. C.; Ding, J.; Liu, L. H.; Kuang, Z. C.; Li, L.; Yang, H. B.; Bai, F. Q.; Huang, Y. Q. et al. Electron-withdrawing functional ligand promotes CO2 reduction catalysis in single atom catalyst. Sci. China Chem. 2020, 63, 1727–1733.

    Article  CAS  Google Scholar 

  30. Zhu, M. H.; Chen, J. C.; Guo, R.; Xu, J.; Fang, X. C.; Han, Y. F. Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B: Environ. 2019, 251, 112–118.

    Article  CAS  Google Scholar 

  31. Zhang, X.; Wang, Y.; Gu, M.; Wang, M. Y.; Zhang, Z. S.; Pan, W. Y.; Jiang, Z.; Zheng, H. Z.; Lucero, M.; Wang, H. L. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 2020, 5, 684–692.

    Article  CAS  Google Scholar 

  32. Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639–642.

    Article  CAS  Google Scholar 

  33. Chen, K. J.; Cao, M. Q.; Lin, Y. Y.; Fu, J. W.; Liao, H. X.; Zhou, Y. J.; Li, H. M.; Qiu, X. Q.; Hu, J. H.; Zheng, X. S. et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 2022, 31, 2111322.

    Article  Google Scholar 

  34. Ma, D. D.; Han, S. G.; Cao, C. S.; Wei, W. B.; Li, X. F.; Chen, B.; Wu, X. T.; Zhu, Q. L. Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization. Energy Environ. Sci. 2021, 14, 1544–1552.

    Article  CAS  Google Scholar 

  35. Wang, R.; Wang, X. Y.; Weng, W. J.; Yao, Y.; Kidkhunthod, P.; Wang, C. C.; Hou, Y.; Guo, J. Proton/electron donors enhancing electrocatalytic activity of supported conjugated microporous polymers for CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202115503.

    CAS  Google Scholar 

  36. Ma, D. D.; Han, S. G.; Cao, C. S.; Li, X. F.; Wu, X. T.; Zhu, Q. L. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine. Appl. Catal. B:Environ. 2020, 264, 118530.

    Article  Google Scholar 

  37. Choi, J.; Wagner, P.; Gambhir, S.; Jalili, R.; MacFarlane, D. R.; Wallace, G. G.; Officer, D. L. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 2019, 4, 666–672.

    Article  CAS  Google Scholar 

  38. Yslas, E. I.; Rivarola, V.; Durantini, E. N. Synthesis and photodynamic activity of zinc(II) phthalocyanine derivatives bearing methoxy and trifluoromethylbenzyloxy substituents in homogeneous and biological media. Bioorgan. Med. Chem. 2005, 13, 39–46.

    Article  CAS  Google Scholar 

  39. Gong, S. H.; Wang, W. B.; Xiao, X. X.; Liu, J.; Wu, C. D.; Lv, X. M. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion. Nano Energy 2021, 84, 105904.

    Article  CAS  Google Scholar 

  40. Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

    Article  Google Scholar 

  41. Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

    Article  CAS  Google Scholar 

  42. Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

    Article  CAS  Google Scholar 

  43. Zhu, M. H.; Ye, R. Q.; Jin, K.; Lazouski, N.; Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 2018, 3, 1381–1386.

    Article  CAS  Google Scholar 

  44. Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports of the National Key R&D Program of China (No. 2021YFA1500402), the National Natural Science Foundation of China (NSFC) (Nos. 21901246, 22105203, and 22175174), and the Natural Science Foundation of Fujian Province (Nos. 2020J01116 and 2021J06033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Dong Ma or Qi-Long Zhu.

Electronic Supplementary Material

12274_2022_4444_MOESM1_ESM.pdf

Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, MK., Wang, N., Ma, DD. et al. Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level. Nano Res. 15, 10070–10077 (2022). https://doi.org/10.1007/s12274-022-4444-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4444-x

Keywords

Navigation