Skip to main content
Log in

Calixarene-integrated nano-drug delivery system for tumor-targeted delivery and tracking of anti-cancer drugs in vivo

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nano-drug delivery systems (nanoDDS) have been extensively investigated clinically to improve the therapeutic effect of anti-cancer drugs. However, the complicated synthesis during the preparation as well as the potential drug leakage during transportation has greatly limited their general application. In this work, a calixarene-integrated nanoDDS (CanD) that achieves tumor-targeted delivery and tracking of anti-cancer drugs in vivo is presented. The hypoxia-responsive calixarene (SAC4A) exhibits high binding affinity to a series of anti-cancer drugs and rhodamine B (RhB) under normoxic condition while decreasing the binding affinity under hypoxic condition, which leads to the drug release and fluorescence recovery simultaneously. Furthermore, the hypoxia-responsiveness of SAC4A conveys CanD with tumor-targeting ability, resulting in the enrichment of the drug in tumors and enhancement in tumor suppression in mice. Moreover, CanD could become a general platform allowing the delivery of a wide scope of anti-cancer drugs that have strong host-guest interaction with SAC4A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, X.; Zhao, Y. L. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev. 2015, 115, 7794–7839.

    Article  CAS  Google Scholar 

  2. Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.

    CAS  Google Scholar 

  3. Shi, J. J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010, 10, 3223–3230.

    Article  CAS  Google Scholar 

  4. Yang, Y.; Liu, J. J.; Sun, X. Q.; Feng, L. Z.; Zhu, W. W.; Liu, Z.; Chen, M. W. Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res. 2016, 9, 139–148.

    Article  CAS  Google Scholar 

  5. Mei, L.; Zhu, G. Z.; Qiu, L. P.; Wu, C. C.; Chen, H. P.; Liang, H.; Cansiz, S.; Lv, Y. F.; Zhang, X. B.; Tan, W. H. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Res. 2015, 8, 3447–3460.

    Article  CAS  Google Scholar 

  6. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew. Chem., Int. Ed. 2003, 42, 4640–4643.

    Article  CAS  Google Scholar 

  7. Chen, F.; Li, Y.; Lin, X. J.; Qiu, H. Y.; Yin, S. C. Polymeric systems containing supramolecular coordination complexes for drug delivery. Polymers (Basel) 2021, 13, 370.

    Article  CAS  Google Scholar 

  8. Qiu, L. P.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q. et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett. 2015, 15, 457–463.

    Article  CAS  Google Scholar 

  9. Schlich, M.; Longhena, F.; Faustini, G.; O’Driscoll, C. M.; Sinico, C.; Fadda, A. M.; Bellucci, A.; Lai, F. Anionic liposomes for small interfering ribonucleic acid (siRNA) delivery to primary neuronal cells: Evaluation of alpha-synuclein knockdown efficacy. Nano Res. 2017, 10, 3496–3508.

    Article  CAS  Google Scholar 

  10. Sun, W. X.; Jiang, H. T.; Wu, X.; Xu, Z. Y.; Yao, C.; Wang, J.; Qin, M.; Jiang, Q.; Wang, W.; Shi, D. Q. et al. Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery. Nano Res. 2019, 12, 115–119.

    Article  CAS  Google Scholar 

  11. Webber, M. J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 2017, 46, 6600–6620.

    Article  CAS  Google Scholar 

  12. Yu, G. C.; Chen, X. Y. Host-guest chemistry in supramolecular theranostics. Theranostics 2019, 9, 3041–3074.

    Article  CAS  Google Scholar 

  13. Leroux, J. C. Editorial: Drug delivery: Too much complexity, not enough reproducibility. Angew. Chem., Int. Ed. 2017, 56, 15170–15171.

    Article  CAS  Google Scholar 

  14. Wang, L.; Li, L. L.; Fan, Y. S.; Wang, H. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv. Mater. 2013, 25, 3888–3898.

    Article  CAS  Google Scholar 

  15. Cao, S. P.; Pei, Z. C.; Xu, Y. Q.; Pei, Y. X. Glyco-nanovesicles with activatable near-infrared probes for real-time monitoring of drug release and targeted delivery. Chem. Mater. 2016, 28, 4501–4506.

    Article  CAS  Google Scholar 

  16. Wu, X. M.; Sun, X. R.; Guo, Z. Q.; Tang, J. B.; Shen, Y. Q.; James, T. D.; Tian, H.; Zhu, W. H. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J. Am. Chem. Soc. 2014, 136, 3579–3588.

    Article  CAS  Google Scholar 

  17. Yan, C. X.; Guo, Z. Q.; Liu, Y. J.; Shi, P.; Tian, H.; Zhu, W. H. A sequence-activated AND logic dual-channel fluorescent probe for tracking programmable drug release. Chem. Sci. 2018, 9, 6176–6182.

    Article  CAS  Google Scholar 

  18. Zhang, Y. F.; Yin, Q.; Yen, J.; Li, J. Ying, H. Z.; Wang, H.; Hua, Y. Y.; Chaney, E. J.; Boppart, S. A.; Cheng, J. J. Non-invasive, real-time reporting drug release in vitro and in vivo. Chem. Commun. 2015, 51, 6948–6951.

    Article  CAS  Google Scholar 

  19. Gao, D.; Xu, H.; Philbert, M. A.; Kopelman, R. Bioeliminable nanohydrogels for drug delivery. Nano Lett. 2008, 8, 3320–3324.

    Article  CAS  Google Scholar 

  20. Cheng, J. J.; Khin, K. T.; Jensen, G. S.; Liu, A. J.; Davis, M. E. Synthesis of linear, β-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem. 2003, 14, 1007–1017.

    Article  CAS  Google Scholar 

  21. Eliasof, S.; Lazarus, D.; Peters, C. G.; Case, R. I.; Cole, R. O.; Hwang, J.; Schluep, T.; Chao, J.; Lin, J.; Yen, Y. et al. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc. Natl. Acad. Sci. USA 2013, 110, 15127–15132.

    Article  CAS  Google Scholar 

  22. Schluep, T.; Hwang, J.; Hildebrandt, I. J.; Czernin, J.; Choi, C. H. J.; Alabi, C. A.; Mack, B. C.; Davis, M. E. Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc. Natl. Acad. Sci. USA 2009, 106, 11394–11399.

    Article  CAS  Google Scholar 

  23. Guo, S. W.; Song, Y. S.; He, Y. L.; Hu, X. Y.; Wang, L. Y. Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly. Angew. Chem., Int. Ed. 2018, 57, 3163–3167.

    Article  CAS  Google Scholar 

  24. Li, B.; Meng, Z.; Li, Q. Q.; Huang, X. Y.; Kang, Z. Y.; Dong, H. J.; Chen, J. Y.; Sun, J.; Dong, Y. S.; Li, J. et al. A pH responsive complexation-based drug delivery system for oxaliplatin. Chem. Sci. 2017, 8, 4458–4464.

    Article  CAS  Google Scholar 

  25. Wu, X.; Li, Y.; Lin, C.; Hu, X. Y.; Wang, L. Y. GSH- and pH-responsive drug delivery system constructed by water-soluble pillar[5]arene and lysine derivative for controllable drug release. Chem. Commun. 2015, 51, 6832–6835.

    Article  CAS  Google Scholar 

  26. Xu, Z.; Jia, S. R.; Wang, W.; Yuan, Z.; Jan Ravoo, B.; Guo, D. S. Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nat. Chem. 2019, 11, 86–93.

    Article  CAS  Google Scholar 

  27. Zheng, Z.; Yu, H. J.; Geng, W. C.; Hu, X. Y.; Wang, Y. Y.; Li, Z. H.; Wang, Y. F.; Guo, D. S. Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants. Nat. Commun. 2019, 10, 5762.

    Article  CAS  Google Scholar 

  28. Chen, H.; Chen, Y. Y.; Wu, H.; Xu, J. F.; Sun, Z. W.; Zhang, X. Supramolecular polymeric chemotherapy based on cucurbit[7]uril-PEG copolymer. Biomaterials 2018, 178, 697–705.

    Article  CAS  Google Scholar 

  29. Chen, Y. Y.; Huang, Z. H.; Zhao, H. Y.; Xu, J. F.; Sun, Z. W.; Zhang, X. Supramolecular chemotherapy: Cooperative enhancement of antitumor activity by combining controlled release of oxaliplatin and consuming of spermine by cucurbit[7]uril. Acs Appl. Mater. Interfaces 2017, 9, 8602–8608.

    Article  CAS  Google Scholar 

  30. Sun, C.; Zhang, H. P.; Li, S. K.; Zhang, X. J.; Cheng, Q.; Ding, Y. F.; Wang, L. H.; Wang, R. B. Polymeric nanomedicine with “Lego” surface allowing modular functionalization and drug encapsulation. ACS Appl. Mater. Interfaces 2018, 10, 25090–25098.

    Article  CAS  Google Scholar 

  31. Karim, A. A.; Dou, Q. Q.; Li, Z. B.; Loh, X. J. Emerging supramolecular therapeutic carriers based on host-guest interactions. Chem. Asian J. 2016, 11, 1300–1321.

    Article  Google Scholar 

  32. Li, J.; Fang, Y.; Zhang, Y. F.; Wang, H. M.; Yang, Z. M.; Ding, D. Supramolecular self-assembly-facilitated aggregation of tumor-specific transmembrane receptors for signaling activation and converting immunologically cold to hot tumors. Adv. Mater. 2021, 33, 2008518.

    Article  CAS  Google Scholar 

  33. Li, X. S.; Bai, H. T.; Yang, Y. C.; Yoon, J.; Wang, S.; Zhang, X. Supramolecular antibacterial materials for combatting antibiotic resistance. Adv. Mater. 2019, 31, 1805092.

    Google Scholar 

  34. Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Supramolecular biomaterials. Nat. Mater. 2016, 15, 13–26.

    Article  CAS  Google Scholar 

  35. Chen, J. Y.; Zhang, Y. D.; Meng, Z.; Guo, L.; Yuan, X. Y.; Zhang, Y. H.; Chai, Y.; Sessler, J. L.; Meng, Q. B.; Li, C. J. Supramolecular combination chemotherapy: A pH-responsive co-encapsulation drug delivery system. Chem. Sci. 2020, 11, 6275–6282.

    Article  CAS  Google Scholar 

  36. Hu, X. Y.; Gao, J.; Chen, F. Y.; Guo, D. S. A host—guest drug delivery nanosystem for supramolecular chemotherapy. J. Control. Release 2020, 324, 124–133.

    Article  CAS  Google Scholar 

  37. Wang, Q.; Tian, L.; Xu, J. Z.; Xia, B.; Li, J.; Lu, F.; Lu, X. M.; Wang, W. J.; Huang, W.; Fan, Q. L. Multifunctional supramolecular vesicles for combined photothermal/photodynamic/hypoxia-activated chemotherapy. Chem. Commun. 2018, 54, 10328–10331.

    Article  CAS  Google Scholar 

  38. Ni, X. L.; Xiao, X.; Cong, H.; Zhu, Q. J.; Xue, S. F.; Tao, Z. Self-assemblies based on the “outer-surface interactions” of cucurbit[n]urils: New opportunities for supramolecular architectures and materials. Acc. Chem. Res. 2014, 47, 1386–1395.

    Article  CAS  Google Scholar 

  39. Webb, M. S.; Johnstone, S.; Morris, T. J.; Kennedy, A.; Gallagher, R.; Harasym, N.; Harasym, T.; Shew, C. R.; Tardi, P.; Dragowska, W. H. et al. In vitro and in vivo characterization of a combination chemotherapy formulation consisting of vinorelbine and phosphatidylserine. Eur. J. Pharm. Biopharm. 2007, 65, 289–299.

    Article  CAS  Google Scholar 

  40. Yu, G. C.; Jie, K. C.; Huang, F. H. Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem. Rev. 2015, 115, 7240–7303.

    Article  CAS  Google Scholar 

  41. Zhang, J. X.; Ma, P. X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Deliv. Rev. 2013, 65, 1215–1233.

    Article  CAS  Google Scholar 

  42. Zhou, J.; Yu, G. C.; Huang, F. H. Supramolecular chemotherapy based on host-guest molecular recognition: A novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev. 2017, 46, 7021–7053.

    Article  CAS  Google Scholar 

  43. Zhang, T. X.; Zhang, Z. Z.; Yue, Y. X.; Hu, X. Y.; Huang, F.; Shi, L. Q.; Liu, Y.; Guo, D. S. A general hypoxia-responsive molecular container for tumor-targeted therapy. Adv. Mater. 2020, 32, 1908435.

    Article  CAS  Google Scholar 

  44. Aryal, S.; Hu, C. M. J.; Zhang, L. F. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol. Pharm. 2011, 8, 1401–1407.

    Article  CAS  Google Scholar 

  45. Dondoni, A.; Marra, A. Calixarene and calixresorcarene glycosides: Their synthesis and biological applications. Chem. Rev. 2010, 110, 4949–4977.

    Article  CAS  Google Scholar 

  46. Zhang, Z. Z.; Yue, Y. X.; Xu, L. N.; Wang, Y.; Geng, W. C.; Li, J. J.; Kong, X. L.; Zhao, X. Z.; Zheng, Y. D.; Zhao, Y. et al. Macrocyclic-amphiphile-based self-assembled nanoparticles for ratiometric delivery of therapeutic combinations to tumors. Adv. Mater. 2021, 33, 2007719.

    Article  CAS  Google Scholar 

  47. Zhang, T. X.; Li, J. J.; Li, H. B.; Guo, D. S. Deep cavitand calixarene-solubilized fullerene as a potential photodynamic agent. Front. Chem. 2021, 9, 710808.

    Article  CAS  Google Scholar 

  48. Roy, S. G.; Acharya, R.; Chatterji, U.; De, P. RAFT polymerization of methacrylates containing a tryptophan moiety: Controlled synthesis of biocompatible fluorescent cationic chiral polymers with smart pH-responsiveness. Polym. Chem. 2013, 4, 1141–1152.

    Article  CAS  Google Scholar 

  49. Rad, M. N. S.; Behrouz, S. The base-free chemoselective ring opening of epoxides with carboxylic acids using [bmim]Br: a rapid entry into 1, 2-diol mono-esters synthesis. Mol. Divers. 2013, 17, 9–18.

    Article  CAS  Google Scholar 

  50. Fu, L. X.; Peng, Y. Q. Isocyanate-functionalized starch as biorenewable backbone for the preparation and application of poly(ethylene imine) grafted starch. Monatsh. Chem. 2017, 148, 1547–1554.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Programs of China (No. 2018YFA0209700), National Natural Science Foundation of China (NSFC, No. 22077073), Frontiers Science Center for New Organic Matter (No. 63181206), and Fundamental Research Funds for the Central Universities (Nankai University, No. 63206015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanzhan Zhang or Yang Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Chai, J., Wang, Y. et al. Calixarene-integrated nano-drug delivery system for tumor-targeted delivery and tracking of anti-cancer drugs in vivo. Nano Res. 15, 7295–7303 (2022). https://doi.org/10.1007/s12274-022-4332-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4332-4

Keywords

Navigation