Skip to main content
Log in

Anionic liposomes for small interfering ribonucleic acid (siRNA) delivery to primary neuronal cells: Evaluation of alpha-synuclein knockdown efficacy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 28 June 2017

This article has been updated

Abstract

Alpha-synuclein (α-syn) deposition in Lewy bodies (LB) is one of the main neuropathological hallmarks of Parkinson’s disease (PD). LB accumulation is considered a causative factor of PD, which suggests that strategies aimed at reducing α-syn levels could be relevant for its treatment. In the present study, we developed novel nanocarriers suitable for systemic delivery of small interfering ribonucleic acid (siRNA) that were specifically designed to reduce neuronal α-syn by RNA interference. Anionic liposomes loaded with an siRNA–protamine complex for α-syn gene silencing and decorated with a rabies virus glycoprotein (RVG)-derived peptide as a targeting agent were prepared. The nanoparticles were characterized for their ability to load, protect, and deliver the functional siRNA to mouse primary hippocampal and cortical neurons as well as their efficiency to induce gene silencing in these cells. Moreover, the nanocarriers were evaluated for their stability in serum. The RVG-decorated liposomes displayed suitable characteristics for future in vivo applications and successfully induced α-syn gene silencing in primary neurons without altering cell viability. Collectively, our results indicate that RVG-decorated liposomes may be an ideal tool for further studies aimed at achieving efficient in vivo α-syn gene silencing in mouse models of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 28 June 2017

    The name of the fourth author in the original version of this article was unfortunately wrongly written on the first page.

References

  1. Bendor, J. T.; Logan, T. P.; Edwards, R. H. The function of α-synuclein. Neuron 2013, 79, 1044–1066.

    Article  Google Scholar 

  2. McLean, P. J.; Kawamata, H.; Ribich, S.; Hyman, B. T. Membrane association and protein conformation of α-synuclein in intact neurons. Effect of parkinson’s disease-linked mutations. J. Biol. Chem. 2000, 275, 8812–8816.

    Google Scholar 

  3. Lashuel, H. A.; Overk, C. R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 2013, 14, 38–48.

    Article  Google Scholar 

  4. Bellucci, A.; Mercuri, N. B.; Venneri, A.; Faustini, G.; Longhena, F.; Pizzi, M.; Missale, C.; Spano, P. Parkinson’s disease: From synaptic loss to connectome dysfunction. Neuropathol. Appl. Neurobiol. 2016, 42, 77–94.

    Article  Google Scholar 

  5. Bellucci, A.; Zaltieri, M.; Navarria, L.; Grigoletto, J.; Missale, C.; Spano, P. From α-synuclein to synaptic dysfunctions: New insights into the pathophysiology of Parkinson’s disease. Brain Res. 2012, 1476, 183–202.

    Article  Google Scholar 

  6. Maraganore, D. M. Rationale for therapeutic silencing of alpha-synuclein in Parkinson’s disease. J. Mov. Disord. 2011, 4, 1–7.

    Article  Google Scholar 

  7. Specht, C. G.; Schoepfer, R. Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci. 2001, 2, 11.

    Article  Google Scholar 

  8. Spillantini, M. G.; Crowther, R. A.; Jakes, R.; Hasegawa, M.; Goedert, M. α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA 1998, 95, 6469–6473.

    Article  Google Scholar 

  9. Braak, H.; DelTredici, K.; Rü b, U.; de Vos, R. A.; Jansen Steur, E. N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211.

    Article  Google Scholar 

  10. Eslamboli, A.; Romero Ramos, M.; Burger, C.; Bjorklund, T.; Muzyczka, N.; Mandel, R. J.; Baker, H.; Ridley, R. M.; Kirik, D.Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 2007, 130, 799–815.

  11. Uversky, V. N. Neuropathology, biochemistry, and biophysics of α-synuclein aggregation. J. Neurochem. 2007, 103, 17–37.

    Google Scholar 

  12. Sapru, M. K.; Yates, J. W.; Hogan, S.; Jiang, L. X.; Halter, J.; Bohn, M. C. Silencing of human α-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp. Neurol. 2006, 198, 382–390.

    Article  Google Scholar 

  13. O’Mahony, A. M.; Godinho, B. M. D. C.; Cryan, J. F.; O’Driscoll, C. M. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: Formulating the solution. J. Pharm. Sci. 2013, 102, 3469–3484.

    Article  Google Scholar 

  14. Lewis, J.; Melrose, H.; Bumcrot, D.; Hope, A.; Zehr, C.; Lincoln, S.; Braithwaite, A.; He, Z.; Ogholikhan, S.; Hinkle, K. et al. In vivo silencing of alpha-synuclein using naked siRNA. Mol. Neurodegener. 2008, 3, 19.

    Article  Google Scholar 

  15. McCormack, A. L.; Mak, S. K.; Henderson, J. M.; Bumcrot, D.; Farrer, M. J.; Di Monte, D. A. α-synuclein suppression by targeted small interfering RNA in the primate substantia nigra. PLoS One 2010, 5, e12122.

    Article  Google Scholar 

  16. Gorbatyuk, O. S.; Li, S. D.; Nash, K.; Gorbatyuk, M.; Lewin, A. S.; Sullivan, L. F.; Mandel, R. J.; Chen, W. J.; Meyers, C.; Manfredsson, F. P. et al. In vivo RNAi-mediated α-synuclein silencing induces nigrostriatal degeneration. Mol. Ther. 2010, 18, 1450–1457.

    Article  Google Scholar 

  17. Nayak, S.; Herzog, R. W. Progress and prospects: Immune responses to viral vectors. Gene Ther. 2010, 17, 295–304.

    Article  Google Scholar 

  18. Li, C. X.; Parker, A.; Menocal, E.; Xiang, S. L.; Borodyansky, L.; Fruehauf, J. H. Delivery of RNA interference. Cell Cycle 2006, 5, 2103–2109.

    Article  Google Scholar 

  19. Haussecker, D. Current issues of RNAi therapeutics delivery and development. J. Control. Release 2014, 195, 49–54.

    Article  Google Scholar 

  20. Grimm, D. Small silencing RNAs: State-of-the-art. Adv. Drug Deliv. Rev. 2009, 61, 672–703.

    Article  Google Scholar 

  21. Yang, J.; Liu, H. M.; Zhang, X. Design, preparation and application of nucleic acid delivery carriers. Biotechnol. Adv. 2014, 32, 804–817.

    Article  Google Scholar 

  22. David, S.; Pitard, B.; Benoît, J. P.; Passirani, C. Non-viral nanosystems for systemic siRNA delivery. Pharmacol. Res. 2010, 62, 100–114.

    Article  Google Scholar 

  23. Cooper, J. M.; Wiklander, P. B. O.; Nordin, J. Z.; Al Shawi, R.; Wood, M. J.; Vithlani, M.; Schapira, A. H. V.; Simons, J. P.; El Andaloussi, S.; Alvarez Erviti, L. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 2014, 29, 1476–1485.

    Article  Google Scholar 

  24. Alvarez Erviti, L.; Seow, Y.; Yin, H. F.; Betts, C.; Lakhal, S.; Wood, M. J. A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345.

    Article  Google Scholar 

  25. Kumar, P.; Wu, H. Q.; McBride, J. L.; Jung, K. E.; Kim, M. H.; Davidson, B. L.; Lee, S. K.; Shankar, P.; Manjunath, N. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007, 448, 39–43.

    Article  Google Scholar 

  26. Robbins, P. D.; Morelli, A. E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 2014, 14, 195–208.

    Article  Google Scholar 

  27. Vader, P.; Mol, E. A.; Pasterkamp, G.; Schiffelers, R. M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016, 106, 148–156.

    Article  Google Scholar 

  28. De Luca, M. A.; Lai, F.; Corrias, F.; Caboni, P.; Bimpisidis, Z.; Maccioni, E.; Fadda, A. M.; Di Chiara, G. Lactoferrin- and antitransferrin-modified liposomes for brain targeting of the NK3 receptor agonist senktide: Preparation and in vivo evaluation. Int. J. Pharm. 2015, 479, 129–137.

    Article  Google Scholar 

  29. Ozpolat, B.; Sood, A. K.; Lopez Berestein, G. Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev. 2014, 66, 110–116.

    Article  Google Scholar 

  30. Li, W. J.; Szoka, F. C. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 2007, 24, 438–449.

    Article  Google Scholar 

  31. Buyens, K.; Demeester, J.; De Smedt, S. S.; Sanders, N. N. Elucidating the encapsulation of short interfering RNA in PEGylated cationic liposomes. Langmuir 2009, 25, 4886–4891.

    Article  Google Scholar 

  32. Huo, H.; Gao, Y. K.; Wang, Y.; Zhang, J. H.; Wang, Z. Y.; Jiang, T. Y.; Wang, S. L. Polyion complex micelles composed of pegylated polyasparthydrazide derivatives for siRNA delivery to the brain. J. Colloid Interface Sci. 2015, 447, 8–15.

    Article  Google Scholar 

  33. Hamidi, M.; Azadi, A.; Rafiei, P. Pharmacokinetic consequences of pegylation. Drug Deliv. 2006, 13, 399–409.

    Article  Google Scholar 

  34. Lafon, M. Rabies virus receptors. J. Neurovirol. 2005, 11, 82–87.

    Article  Google Scholar 

  35. Bauer, M.; Kristensen, B. W.; Meyer, M.; Gasser, T.; Widmer, H. R.; Zimmer, J.; Ueffing, M. Toxic effects of lipid-mediated gene transfer in ventral mesencephalic explant cultures. Basic Clin. Pharmacol. Toxicol. 2006, 98, 395–400.

    Article  Google Scholar 

  36. Zaltieri, M.; Grigoletto, J.; Longhena, F.; Navarria, L.; Favero, G.; Castrezzati, S.; Colivicchi, M. A.; Della Corte, L.; Rezzani, R.; Pizzi, M. et al. α-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. J. Cell Sci. 2015, 128, 2231–2243.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Micaela Morelli for supporting the establishment of the collaboration between the groups participating to this study. M. S. thanks Angela Corona for fruitful discussions about the design and implementation of the project. A. B. is grateful to “Ambrosini Arredamenti SNC” for funding support within the project “Molecular Mechanisms, associated with Neurodegenerative Diseases” and the Italian Ministry of Education, University and Scientific Research—University of Brescia Ex 60% Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Lai.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12274-017-1726-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlich, M., Longhena, F., Faustini, G. et al. Anionic liposomes for small interfering ribonucleic acid (siRNA) delivery to primary neuronal cells: Evaluation of alpha-synuclein knockdown efficacy. Nano Res. 10, 3496–3508 (2017). https://doi.org/10.1007/s12274-017-1561-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1561-z

Keywords

Navigation