Skip to main content
Log in

Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hydrogels that can respond to dynamic forces either from endogenous biological activities or from external mechanical stimuli show great promise as novel drug delivery systems (DDS). However, it remains challenging to engineer hydrogels that specifically respond to externally applied mechanical forces with minimal basal drug leakage under normal stressful physiological conditions. Here we present an ultrasound responsive hydrogel-based DDS with special dual-crosslinked nanoscale network architecture. The covalent crosslinks endow the hydrogel high mechanical stability and greatly suppress deformation-triggered drug release. Meanwhile, the dynamic covalent boronate ester linkages between hydrogel backbone and the anti-inflammation compound, tannic acid (TA), allow effective ultrasound-triggered pulsatile release of TA. As such, the hydrogel shows distinct drug release profiles under compression and ultrasound. A proof-of-principle demonstration of the suppression of inflammation activation of macrophage upon ultrasound-triggered release of TA was also illustrated. We anticipate that this novel hydrogel-based drug delivery system can be used for the treatment of inflammatory diseases on load-bearing tissues, such as muscle and cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

    Article  Google Scholar 

  2. Drury, J. L.; Mooney, D. J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterial. 2003, 24, 4337–4351.

    Article  Google Scholar 

  3. Wang, H. Y.; Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 2015, 27, 3717–3736.

    Article  Google Scholar 

  4. Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21, 3307–3329.

    Article  Google Scholar 

  5. Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P. T.; Nair, S. V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337.

    Article  Google Scholar 

  6. Koehler, J.; Brandl, F. P.; Goepferich, A. M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 2018, 100, 1–11.

    Article  Google Scholar 

  7. Xue, B.; Qin, M.; Wang, T. K.; Wu, J. H.; Luo, D. J.; Jiang, Q.; Li, Y.; Cao, Y.; Wang, W. Electrically controllable actuators based on supramolecular peptide hydrogels. Adv. Funct. Mater. 2016, 26, 9053–9062.

    Article  Google Scholar 

  8. Pei, Z. Q.; Yang, Y.; Chen, Q. M.; Terentjev, E. M.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014, 13, 36–41.

    Article  Google Scholar 

  9. Fratzl, P.; Barth, F. G. Biomaterial systems for mechanosensing and actuation. Natur. 2009, 462, 442–448.

    Article  Google Scholar 

  10. Li, J. Y.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.

    Article  Google Scholar 

  11. Zhang, S. F.; Ermann, J.; Succi, M. D.; Zhou, A.; Hamilton, M. J.; Cao, B.; Korzenik, J. R.; Glickman, J. N.; Vemula, P. K.; Glimcher, L. H. et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci. Transl. Med. 2015, 7, 300ra128.

    Google Scholar 

  12. Zhang, X. L.; Dong, C. M.; Huang, W. Y.; Wang, H. M.; Wang, L.; Ding, D.; Zhou, H.; Long, J. F.; Wang, T. L.; Yang, Z. M. Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptideprotein conjugate for responsive hydrogel formation. Nanoscal. 2015, 7, 16666–16670.

    Article  Google Scholar 

  13. Zhang, Y. Q.; Yu, J. C.; Bomba, H. N.; Zhu, Y.; Gu, Z. Mechanical forcetriggered drug delivery. Chem. Rev. 2016, 116, 12536–12563.

    Article  Google Scholar 

  14. Sverdlova, N. S.; Witzel, U. Principles of determination and verification of muscle forces in the human musculoskeletal system: Muscle forces to minimise bending stress. J. Biomech. 2010, 43, 387–396.

    Article  Google Scholar 

  15. Mansour, J. M. Biomechanics of cartilage. In Kinesiology: The Mechanics and Pathomechanics of Human Movement. Oatis, C. A., Ed.; Wolter Kluwer: Philadelphia. 2003; pp 66–79.

    Google Scholar 

  16. Zamir, M. Shear forces and blood vessel radii in the cardiovascular system. J. Gen. Physiol. 1977, 69, 449–461.

    Article  Google Scholar 

  17. Barnes, L. A.; Marshall, C. D.; Leavitt, T.; Hu, M. S.; Moore, A. L.; Gonzalez, J. G.; Longaker, M. T.; Gurtner, G. C. Mechanical forces in cutaneous wound healing: Emerging therapies to minimize scar formation. Adv. Wound Car. 2018, 7, 47–56.

    Article  Google Scholar 

  18. Lee, K. Y.; Peters, M. C.; Anderson, K. W.; Mooney, D. J. Controlled growth factor release from synthetic extracellular matrices. Natur. 2000, 408, 998–1000.

    Article  Google Scholar 

  19. Van Der Schaft, D. W. J.; Van Spreeuwel, A. C. C.; Van Assen, H. C.; Baaijens, F. P. T. Mechanoregulation of vascularization in aligned tissueengineered muscle: A role for vascular endothelial growth factor. Tissue Eng. Part. 2011, 17, 2857–2865.

    Article  Google Scholar 

  20. Holme, M. N.; Fedotenko, I. A.; Abegg, D.; Althaus, J.; Babel, L.; Favarger, F.; Reiter, R.; Tanasescu, R.; Zaffalon, P. L.; Ziegler, A. et al. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 2012, 7, 536–543.

    Article  Google Scholar 

  21. Korin, N.; Kanapathipillai, M.; Matthews, B. D.; Crescente, M.; Brill, A.; Mammoto, T.; Ghosh, K.; Jurek, S.; Bencherif, S. A.; Bhatta, D. et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Scienc. 2012, 337, 738–742.

    Article  Google Scholar 

  22. Lu, Y.; Hu, Q. Y.; Lin, Y. L.; Pacardo, D. B.; Wang, C.; Sun, W. J.; Ligler, F. S.; Dickey, M. D.; Gu, Z. Transformable liquid-metal nanomedicine. Nat. Commun. 2015, 6, 10066.

    Article  Google Scholar 

  23. Di, J.; Yu, J. C.; Wang, Q.; Yao, S. S.; Suo, D. J.; Ye, Y. Q.; Pless, M.; Zhu, Y.; Jing, Y.; Gu, Z. Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res. 2017, 10, 1393–1402.

    Article  Google Scholar 

  24. Ye, Y. Q.; Wang, J. Q.; Hu, Q. Y.; Hochu, G. M.; Xin, H. L.; Wang, C.; Gu, Z. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nan. 2016, 10, 8956–8963.

    Article  Google Scholar 

  25. Wang, C.; Sun, W. J.; Wright, G.; Wang, A. Z.; Gu, Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv. Mater. 2016, 28, 8912–8920.

    Article  Google Scholar 

  26. Hu, Q. Y.; Qian, C. G.; Sun, W. J.; Wang, J. Q.; Chen, Z. W.; Bomba, H. N.; Xin, H. L.; Shen, Q. D.; Gu, Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 2016, 28, 9573–9580.

    Article  Google Scholar 

  27. Sirsi, S. R.; Borden, M. A. State-of-the-art materials for ultrasoundtriggered drug delivery. Adv. Drug. Deliv. Rev. 2014, 72, 3–14.

    Article  Google Scholar 

  28. Di, J.; Price, J.; Gu, X.; Jiang, X. N.; Jing, Y.; Gu, Z. Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv. Healthc. Mater. 2014, 3, 811–816.

    Article  Google Scholar 

  29. Huebsch, N.; Kearney, C. J.; Zhao, X. H.; Kim, J.; Cezar, C. A.; Suo, Z. G.; Mooney, D. J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. US. 2014, 111, 9762–9767.

    Article  Google Scholar 

  30. Wang, J. L.; Kaplan, J. A.; Colson, Y. L.; Grinstaff, M. W. Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Adv. Drug. Deliv. Rev. 2017, 108, 68–82.

    Article  Google Scholar 

  31. Thévenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic responsive polymer composite materials. Chem. Soc. Rev. 2013, 42, 7099–7116.

    Article  Google Scholar 

  32. Dai, Q.; Nelson, A. Magnetically-responsive self assembled composites. Chem. Soc. Re. 2010, 39, 4057–4066.

    Article  Google Scholar 

  33. Yu, J. C.; Zhang, Y. Q.; Sun, W. J.; Wang, C.; Ranson, D.; Ye, Y. Q.; Weng, Y. Y.; Gu, Z. Internalized compartments encapsulated nanogels for targeted drug delivery. Nanoscal. 2016, 8, 9178–9184.

    Article  Google Scholar 

  34. Lu, Y.; Sun, W. J.; Gu, Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Control. Releas. 2014, 194, 1–19.

    Article  Google Scholar 

  35. Hu, Q. Y.; Katti, P. S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscal. 2014, 6, 12273–12286.

    Article  Google Scholar 

  36. Mayumi, K.; Marcellan, A.; Ducouret, G.; Creton, C.; Narita, T. Stressstrain relationship of highly stretchable dual cross-link gels: Separability of strain and time effect. ACS Macro Lett. 2013, 2, 1065–1068.

    Article  Google Scholar 

  37. Kampa M.; Nifli, A. P.; Notas G.; Castanas E. Polyphenols and cancer cell growth. In Reviews of Physiology, Biochemistry and Pharmacology. Amara, S.; Bamberg, E.; Fleischmann, B.; Gudermann, T.; Hebert, S. C.; Jahn, R.; Lederer, W. J.; Lill, R.; Miyajima, A.; Offermanns, S. et al., Eds.; Springer: Berlin, Heidelberg. 2007.

    Google Scholar 

  38. Shukla, M.; Gupta, K.; Rasheed, Z.; Khan, K. A.; Haqqi, T. M. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutritio. 2008, 24, 733–743.

    Google Scholar 

  39. Rasheed, Z.; Anbazhagan, A. N.; Akhtar, N.; Ramamurthy, S.; Voss, F. R.; Haqqi, T. M. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-a and matrix metalloproteinase-13 in human chondrocytes. Arthritis Res. Ther. 2009, 11, R71.

    Article  Google Scholar 

  40. Yesilyurt, V.; Webber, M. J.; Appel, E. A.; Godwin, C.; Langer, R.; Anderson, D. G. Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties. Adv. Mater. 2016, 28, 86–91.

    Article  Google Scholar 

  41. Dong, Y. Z.; Wang, W. H.; Veiseh, O.; Appel, E. A.; Xue, K.; Webber, M. J.; Tang, B. C.; Yang, X. W.; Weir, G. C.; Langer, R. et al. Injectable and glucose-responsive hydrogels based on boronic acid–glucose complexation. Langmui. 2016, 32, 8743–8747.

    Article  Google Scholar 

  42. Bapat, A. P.; Roy, D.; Ray, J. G.; Savin, D. A.; Sumerlin, B. S. Dynamiccovalent macromolecular stars with boronic ester linkages. J. Am. Chem. Soc. 2011, 133, 19832–19838.

    Article  Google Scholar 

  43. Cromwell, O. R.; Chung, J.; Guan, Z. B. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 2015, 137, 6492–6495.

    Article  Google Scholar 

  44. He, L. H.; Fullenkamp, D. E.; Rivera, J. G.; Messersmith, P. B. pH responsive self-healing hydrogels formed by boronate–catechol complexation. Chem. Commun. 2011, 47, 7497–7499.

    Article  Google Scholar 

  45. Leslie, K. O.; Trahan, S.; Gruden, J. Pulmonary pathology of the rheumatic diseases. Semin. Resp. Crit. Car. 2007, 28, 369–378.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported mainly by the National Natural Science Foundation of China (Nos. 21522402, 11674153, 81622033 and 21774057) and the Fundamental Research Funds for the Central Universities (No. 020414380080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang, Dongquan Shi or Yi Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Jiang, H., Wu, X. et al. Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery. Nano Res. 12, 115–119 (2019). https://doi.org/10.1007/s12274-018-2188-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2188-4

Keywords

Navigation