Skip to main content
Log in

Intrinsically patterned corrals in monolayer Ag5Se2 and selective molecular co-adsorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Functionalized two-dimensional (2D) materials play an important role in both fundamental sciences and practical applications. The construction and precise control of patterns at the atomic-scale are necessary for selective and multiple functionalization. Here we report the fabrication of monolayer pentasilver diselenide (Ag5Se2), a new type of intrinsically patterned 2D material, by direct selenization of a Ag(111) surface. The atomic arrangement is determined by a combination of scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and density-functional-theory (DFT) calculations. Large-scale STM images exhibit a quasi-periodic pattern of stoichiometric triangular domains with a side length of ~ 15 nm and apical offsets. The boundaries between triangular domains are sub-stoichiometric. Deposition of different molecules on the patterned Ag5Se2 exhibits selective adsorption behavior. Pentacene molecules preferentially adsorb on the boundaries, while tetracyanoquinodimethane (TCNQ) molecules adsorb both on the boundaries and the triangular domains. By co-depositing pentacene and TCNQ molecules, we successfully construct molecular corrals with pentacene on the boundaries encircling TCNQ molecules on the triangular domains. The realization of epitaxial large-scale and high-quality, monolayer Ag5Se2 extends the family of intrinsically patterned 2D materials and provides a paradigm for dual functionalization of 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  CAS  Google Scholar 

  3. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  4. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  5. Gao, L.; Sun, J. T.; Lu, J. C.; Li, H.; Qian, K.; Zhang, S.; Zhang, Y. Y.; Qian, T.; Ding, H.; Lin, X. et al. Epitaxial growth of honeycomb monolayer CuSe with Dirac nodal line fermions. Adv. Mater. 2018, 30, 1707055.

    Article  Google Scholar 

  6. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  CAS  Google Scholar 

  7. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  8. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016, 10, 216–226.

    Article  CAS  Google Scholar 

  9. Wang, X. Y.; Zhang, H.; Ruan, Z. L.; Hao, Z. L.; Yang, X. T.; Cai, J. M.; Lu, J. C. Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultrahigh vacuum conditions. Acta Phys. Sin. 2020, 69, 118101.

    Article  Google Scholar 

  10. Wang, X. Y.; Ruan, Z. L.; Du, R. J.; Zhang, H.; Yang, X. T.; Niu, G. F.; Cai, J. M.; Lu, J. C. Structural characterizations and electronic properties of CuSe monolayer endowed with triangular nanopores. J. Mater. Sci. 2021, 56, 10406–10413.

    Article  CAS  Google Scholar 

  11. Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

    Article  CAS  Google Scholar 

  12. Lu, J. C.; Bao, D. L.; Qian, K.; Zhang, S.; Chen, H.; Lin, X.; Du, S. X.; Gao, H. J. Identifying and visualizing the edge terminations of single-layer MoSe2 island epitaxially grown on Au(111). ACS Nano 2017, 11, 1689–1695.

    Article  CAS  Google Scholar 

  13. Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

    Article  CAS  Google Scholar 

  14. Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

    Article  CAS  Google Scholar 

  15. Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 2009, 21, 4726–4730.

    CAS  Google Scholar 

  16. Garnica, M.; Stradi, D.; Barja, S.; Calleja, F.; Díaz, C.; Alcamí, M.; Martín, N.; De Parga, A. L. V.; Martín, F.; Miranda, R. Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat. Phys. 2013, 9, 368–374.

    Article  CAS  Google Scholar 

  17. Voiry, D.; Goswami, A.; Kappera, R.; E Silva, C. D. C. C.; Kaplan, D.; Fujita, T.; Chen, M. W.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2015, 7, 45–49.

    Article  CAS  Google Scholar 

  18. Kumar, A.; Banerjee, K.; Liljeroth, P. Molecular assembly on two-dimensional materials. Nanotechnology 2017, 28, 082001.

    Article  Google Scholar 

  19. Zhou, H. T.; Zhang, L. Z.; Mao, J. H.; Li, G.; Zhang, Y.; Wang, Y. L.; Du, S. X.; Hofer, W. A.; Gao, H. J. Template-directed assembly of pentacene molecules on epitaxial graphene on Ru(0001). Nano Res. 2013, 6, 131–137.

    Article  CAS  Google Scholar 

  20. Dil, H.; Lobo-Checa, J.; Laskowski, R.; Blaha, P.; Berner, S.; Osterwalder, J.; Greber, T. Surface trapping of atoms and molecules with dipole rings. Science 2008, 319, 1824–1826.

    Article  CAS  Google Scholar 

  21. Lin, X.; Lu, J. C.; Shao, Y.; Zhang, Y. Y.; Wu, X.; Pan, J. B.; Gao, L.; Zhu, S. Y.; Qian, K.; Zhang, Y. F. et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. 2017, 16, 717–721.

    Article  CAS  Google Scholar 

  22. Liu, Z. L.; Lei, B.; Zhu, Z. L.; Tao, L.; Qi, J.; Bao, D. L.; Wu, X.; Huang, L.; Zhang, Y. Y.; Lin, X. et al. Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis. Nano Lett. 2019, 19, 4897–4903.

    Article  CAS  Google Scholar 

  23. Arnold, F.; Stan, R. M.; Mahatha, S. K.; Lund, H. E.; Curcio, D.; Dendzik, M.; Bana, H.; Travaglia, E.; Bignardi, L.; Lacovig, P. et al. Novel single-layer vanadium sulphide phases. 2D Mater. 2018, 5, 045009.

    Article  CAS  Google Scholar 

  24. Du, S. X.; Gao, H. J.; Seidel, C.; Tsetseris, L.; Ji, W.; Kopf, H.; Chi, L. F.; Fuchs, H.; Pennycook, S. J.; Pantelides, S. T. Selective nontemplated adsorption of organic molecules on nanofacets and the role of bonding patterns. Phys. Rev. Lett. 2006, 97, 156105.

    Article  CAS  Google Scholar 

  25. Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013–4018.

    Article  CAS  Google Scholar 

  26. Lu, J. C.; Gao, L.; Song, S. R.; Li, H.; Niu, G. F.; Chen, H.; Qian, T.; Ding, H.; Lin, X.; Du, S. X. et al. Honeycomb AgSe monolayer nanosheets for studying two-dimensional dirac nodal line fermions. ACS Appl. Nano Mater. 2021, 4, 8845–8850.

    Article  CAS  Google Scholar 

  27. Patrick, D. L.; Cee, V. J.; Beebe, T. P. Jr. “Molecule corrals” for studies of monolayer organic films. Science 1994, 265, 231–234.

    Article  CAS  Google Scholar 

  28. Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  CAS  Google Scholar 

  29. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Article  Google Scholar 

  30. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  31. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial support from the National Key R&D Program of China (Nos. 2018YFA0305800 and 2019YFA0308500), National Natural Science Foundation of China (Nos. 61901200, 61925111, 61888102, and 21661132006), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB30000000 and XDB28000000), the International Partnership Program of Chinese Academy of Sciences (No. 112111KYSB20160061), the KC Wong Education Foundation, the Yunnan Fundamental Research Projects (Nos. 2019FD041, 202201AT070078, and 202101AW070010), and the China Postdoctoral Science Foundation. Part of the research was performed in the Key Laboratory of Vacuum Physics, Chinese Academy of Sciences. Computational resources were provided by the National Supercomputing Center in Tianjin Municipality, China. Work at Vanderbilt University was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division grant No. DE-FG-02-09ER46554 and by the McMinn endowment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shixuan Du, Xiao Lin or Hong-Jun Gao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Song, S., Zhang, S. et al. Intrinsically patterned corrals in monolayer Ag5Se2 and selective molecular co-adsorption. Nano Res. 15, 6730–6735 (2022). https://doi.org/10.1007/s12274-022-4314-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4314-6

Keywords

Navigation