Skip to main content
Log in

Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silicon-based materials has attracted attention as a promising candidate for lithium-ion batteries (LIBs) with high energy density. However, severe volume variation, pulverization, and poor conductivity hindered the development of Si based materials. In this study, porous Si microparticles supported by carbon nanotubes (p-Si/CNT) are fabricated through simple molten salt assisted dealloying process at low temperature followed by acid treatment. The ZnCl2 molten salt not only provides the liquid environment to enhance the reaction, but also participates the dealloying process and works as template for porous structure when removes by acid treatment. Additionally, distribution of defect sites in CNTs also increases after molten salt process. Density function theory (DFT) calculations further prove the defects could improve the adsorption of Li+. The participation of CNTs can also contribute to the reaction kinetics and retain the integrity of the electrode. As expected, the p-Si/CNT anode manifests enhanced lithium-storage performance in terms of superior cycling stability and good rate capability. The p-Si/CNT//LiCoO2 full cell assembly further demonstrates its potential as a prospective anode for high-performance LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

    Article  CAS  Google Scholar 

  2. Zu, C. X.; Yu, H. G.; Li, H. Enabling the thermal stability of solid electrolyte interphase in Li-ion battery. InfoMat 2021, 3, 648–661.

    Article  CAS  Google Scholar 

  3. Parekh, M. H.; Parikh, V. P.; Kim, P. J.; Misra, S.; Qi, Z. M.; Wang, H. Y.; Pol, V. G. Encapsulation and networking of silicon nanoparticles using amorphous carbon and graphite for high performance Li-ion batteries. Carbon 2019, 148, 36–43.

    Article  CAS  Google Scholar 

  4. Zhang, Q. L.; Xi, B. J.; Xiong, S. L.; Qian, Y. T. Carbon coated SiO nanoparticles embedded in hierarchical porous N-doped carbon nanosheets for enhanced lithium storage. Inorg. Chem. Front. 2021, 8, 4282–4290.

    Article  CAS  Google Scholar 

  5. Wang, L. B.; Lin, N.; Zhou, J. B.; Zhu, Y. C.; Qian, Y. T. Silicon nanoparticles obtained via a low temperature chemical “metathesis” synthesis route and their lithium-ion battery properties. Chem. Commun. 2015, 51, 2345–2348.

    Article  CAS  Google Scholar 

  6. Zhou, J. B.; Liu, X. Y.; Cai, W. L.; Zhu, Y. C.; Liang, J. W.; Zhang, K. L.; Lan, Y.; Jiang, Z. H.; Wang, G. M.; Qian, Y. T. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv. Mater. 2017, 29, 1700214.

    Article  Google Scholar 

  7. Zhang, S. J.; Liu, C.; Wang, H. L.; Wang, H. P.; Sun, J. T.; Zhang, Y. M.; Han, X. P.; Cao, Y.; Liu, S.; Sun, J. A covalent P-C bond stabilizes red phosphorus in an engineered carbon host for high-performance lithium-ion battery anodes. ACS Nano 2021, 15, 3365–3375.

    Article  CAS  Google Scholar 

  8. Liu, X. Y.; Zhang, L.; Liu, Z.; Zheng, Y. P.; Zhao, Y.; Yang, Y. C.; Zhang, Q. L.; Li, S. Y. Alkaliphilic Cu(OH)2 nanowires on copper foam for dendrite-free alkali metal anodes. J. Alloys Compd. 2022, 898, 162815.

    Article  CAS  Google Scholar 

  9. Wei, C. L.; Fei, H. F.; An, Y. L.; Tao, Y.; Feng, J. K.; Qian, Y. T. Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li-metal anode. J. Mater. Chem. A 2019, 7, 18861–18870.

    Article  CAS  Google Scholar 

  10. Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

    Article  CAS  Google Scholar 

  11. Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

    Article  CAS  Google Scholar 

  12. Hou, G. L.; Cheng, B. L.; Yang, Y. J.; Du, Y.; Zhang, Y. H.; Li, B. Q.; He, J. P.; Zhou, Y. Z.; Yi, D.; Zhao, N. N. et al. Multiscale buffering engineering in silicon-carbon anode for ultrastable Li-ion storage. ACS Nano 2019, 13, 10179–10190.

    Article  CAS  Google Scholar 

  13. Chen, M.; Zhou, Q. N.; Zai, J. T.; Iqbal, A.; Tsega, T.; Dong, B. X.; Liu, X. J.; Zhang, Y. C.; Yan, C. Y.; Zhao, L. et al. High power and stable P-doped yolk-shell structured Si@C anode simultaneously enhancing conductivity and Li+ diffusion kinetics. Nano Res. 2021, 14, 1004–1011.

    Article  CAS  Google Scholar 

  14. Han, Y.; Zhou, J.; Li, T. Q.; Yi, Z.; Lin, N.; Qian, Y. T. Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode. Nano Res. 2018, 11, 6294–6303.

    Article  CAS  Google Scholar 

  15. Zhao, Y. M.; Yue, F. S.; Li, S. C.; Zhang, Y.; Tian, Z. R.; Xu, Q.; Xin, S.; Guo, Y. G. Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries. InfoMat 2021, 3, 460–501.

    Article  CAS  Google Scholar 

  16. Tian, Y.; An, Y. L.; Feng, J. K. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 10004–10011.

    Article  CAS  Google Scholar 

  17. Lin, N.; Han, Y.; Zhou, J.; Zhang, K. L.; Xu, T. J.; Zhu, Y. C.; Qian, Y. T. A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries. Energy Environ. Sci. 2015, 8, 3187–3191.

    Article  CAS  Google Scholar 

  18. Zong, L. Q.; Zhu, B.; Lu, Z. D.; Tan, Y. L.; Jin, Y.; Liu, N.; Hu, Y.; Gu, S.; Zhu, J.; Cui, Y. Nanopurification of silicon from 84% to 99. 999% purity with a simple and scalable process. Proc. Natl. Acad. Sci. USA 2015, 112, 13473–13477.

    Article  CAS  Google Scholar 

  19. Yi, Z.; Qian, Y.; Cao, C. H.; Lin, N.; Qian, Y. T. Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated Si@C channels for enhanced lithium storage. Carbon 2019, 149, 664–671.

    Article  CAS  Google Scholar 

  20. Sohn, M.; Lee, D. G.; Park, H. I.; Park, C.; Choi, J. H.; Kim, H. Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering. Adv. Funct. Mater. 2018, 28, 1800855.

    Article  Google Scholar 

  21. Ge, M. Y.; Lu, Y. H.; Ercius, P.; Rong, J. P.; Fang, X.; Mecklenburg, M.; Zhou, C. W. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 2014, 14, 261–268.

    Article  CAS  Google Scholar 

  22. An, W. L.; Gao, B.; Mei, S. X.; Xiang, B.; Fu, J. J.; Wang, L.; Zhang, Q. B.; Chu, P. K.; Huo, K. F. Scalable synthesis of ant-nestlike bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447.

    Article  Google Scholar 

  23. Zhai, W.; Ai, Q.; Chen, L. N.; Wei, S. Y.; Li, D. P.; Zhang, L.; Si, P. C.; Feng, J. K.; Ci, L. J. Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithiumion battery anodes. Nano Res. 2017, 10, 4274–4283.

    Article  CAS  Google Scholar 

  24. Yi, Z.; Lin, N.; Xu, T. J.; Qian, Y. T. TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage. Chem. Eng. J. 2018, 347, 214–222.

    Article  CAS  Google Scholar 

  25. An, Y. L.; Tian, Y.; Wei, H.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv. Funct. Mater. 2020, 30, 1908721.

    Article  CAS  Google Scholar 

  26. Chae, S.; Xu, Y. B.; Yi, R.; Lim, H. S.; Velickovic, D.; Li, X. L.; Li, Q. Y.; Wang, C. M.; Zhang, J. G. A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon. Adv. Mater. 2021, 33, 2103095.

    Article  CAS  Google Scholar 

  27. Huang, Y. H.; Luo, J.; Peng, J.; Shi, M. H.; Li, X. X.; Wang, X. Y.; Chang, B. B. Porous silicon-graphene-carbon composite as high performance anode material for lithium ion batteries. J. Energy Storage 2020, 27, 101075.

    Article  Google Scholar 

  28. Zhou, W. Y.; Lian, Q. H.; Huang, X. K.; Ding, W. Q.; Jiang, C. H.; Zou, Z. M.; Su, X. D. Introducing SiC/C dual-interface on porous silicon anode by a conventional exothermic displacement reaction for improved cycle performance. J. Power Sources 2021, 508, 230326.

    Article  CAS  Google Scholar 

  29. Salvetat, J. P.; Bonard, J. M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes. Appl. Phys. A 1999, 69, 255–260.

    Article  CAS  Google Scholar 

  30. Zeng, Y. F.; Huang, Y. D.; Liu, N. T.; Wang, X. C.; Zhang, Y.; Guo, Y.; Wu, H. H.; Chen, H. X.; Tang, X. C.; Zhang, Q. B. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J. Energy Chem. 2021, 54, 727–735.

    Article  CAS  Google Scholar 

  31. Liang, J. W.; Li, X. N.; Hou, Z. G.; Guo, C.; Zhu, Y. C.; Qian, Y. T. Nanoporous silicon prepared through air-oxidation demagnesiation of Mg2Si and properties of its lithium ion batteries. Chem. Commun. 2015, 51, 7230–7233.

    Article  CAS  Google Scholar 

  32. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  33. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  34. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  35. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  36. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  37. Peng, X. D.; Xiong, C.; Lin, Y. K.; Zhao, C.; Zhao, T. S. Honeycomb-like hierarchical porous silicon composites with dual protection for ultrastable Li-ion battery anodes. SmartMat 2021, 2, 579–590.

    Article  CAS  Google Scholar 

  38. Acres, R. G.; Ellis, A. V.; Alvino, J.; Lenahan, C. E.; Khodakov, D. A.; Metha, G. F.; Andersson, G. G. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J. Phys. Chem. C 2012, 116, 6289–6297.

    Article  CAS  Google Scholar 

  39. Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654–2662.

    Article  CAS  Google Scholar 

  40. Yuan, Y.; Chen, Z. W.; Yu, H. X.; Zhang, X. K.; Liu, T. T.; Xia, M. T.; Zheng, R. T.; Shui, M.; Shu, J. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 2020, 32, 65–90.

    Article  Google Scholar 

  41. Yang, Z. X.; Du, Y.; Hou, G. L.; Ouyang, Y. G.; Ding, F.; Yuan, F. L. Nanoporous silicon spheres preparation via a controllable magnesiothermic reduction as anode for Li-ion batteries. Electrochim. Acta 2020, 329, 135141.

    Article  CAS  Google Scholar 

  42. An, Y. L.; Fei, H. F.; Zeng, G. F.; Ci, L. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano 2018, 12, 4993–5002.

    Article  CAS  Google Scholar 

  43. Li, X. L.; Gu, M.; Hu, S. Y.; Kennard, R.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Sailor, M. J.; Zhang, J. G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014, 5, 4105.

    Article  CAS  Google Scholar 

  44. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

    Article  CAS  Google Scholar 

  45. Pan, K.; Zou, F.; Canova, M.; Zhu, Y.; Kim, J. H. Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-Ion batteries. J. Power Sources 2019, 413, 20–28.

    Article  CAS  Google Scholar 

  46. Suh, S.; Choi, H.; Eom, K.; Kim, H. J. Enhancing the electrochemical properties of a Si anode by introducing cobalt metal as a conductive buffer for lithium-ion batteries. J. Alloys Compd. 2020, 827, 154102.

    Article  CAS  Google Scholar 

  47. Zhang, H.; Zong, P.; Chen, M.; Jin, H.; Bai, Y.; Li, S. W.; Ma, F.; Xu, H.; Lian, K. In situ synthesis of multilayer carbon matrix decorated with copper particles: Enhancing the performance of Si as anode for Li-ion batteries. ACS Nano 2019, 13, 3054–3062.

    Article  CAS  Google Scholar 

  48. Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.

    Article  CAS  Google Scholar 

  49. Fan, X. F.; Zheng, W. T.; Kuo, J. L. Adsorption and diffusion of Li on pristine and defective graphene. ACS Appl. Mater. Interfaces 2012, 4, 2432–2438.

    Article  CAS  Google Scholar 

  50. Zheng, J. M.; Ren, Z. Y.; Guo, P.; Fang, L.; Fan, J. Diffusion of Li+ ion on graphene: A DFT study. Appl. Surf. Sci. 2011, 258, 1651–1655.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports provided by the National Natural Science Foundation of China (Nos. U21A2077, 21971145, and 21871164), the Taishan Scholar Project Foundation of Shandong Province (No. ts20190908), the Natural Science Foundation of Shandong Province (Nos. ZR2021ZD05 and ZR2019MB024), and Young Scholars Program of Shandong University (No. 2017WLJH15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baojuan Xi or Shenglin Xiong.

Electronic Supplementary Material

12274_2022_4275_MOESM1_ESM.pdf

Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xi, B., Chen, W. et al. Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes. Nano Res. 15, 6184–6191 (2022). https://doi.org/10.1007/s12274-022-4275-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4275-9

Keywords

Navigation