Skip to main content
Log in

Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Coulombic efficiency (CE), short lifespan, and safety hazards. Here, we report a highly stable and dendrite-free Li metal anode by utilizing N-doped hollow porous bowl-like hard carbon/reduced graphene nanosheets (CB@rGO) hybrids as three-dimensional (3D) conductive and lithiophilic scaffold host. The lithiophilic carbon bowl (CB) mainly works as excellent guides during the Li plating process, whereas the rGO layer with high conductivity and mechanical stability maintains the integrity of the composite by confining the volume change in long-range order during cycling. Moreover, the local current density can be reduced due to the 3D conductive framework. Therefore, CB@rGO presents a low lithium metal nucleation overpotential of 18 mV, high CE of 98%, and stable cycling without obvious voltage fluctuation for over 600 cycles at a current density of 1 mA·cm−2. Our study not only provides a good CB@rGO host and pre-Lithiated CB@rGO composite anode electrode, but also brings a new strategy of designing 3D electrodes for those active materials suffering from severe volume expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, Y.; Zhao, C. Z.; Yuan, H; Chen, Y.; Zhang, W.; Huang, J. Q.; Yu D.; Liu, Y; Titirici, M. M.; Chueh, Y. L. et al. A review of rechargeable batteries for portable electronic devices. InfoMat. 2019, 1, 6–32.

    Article  CAS  Google Scholar 

  2. Wang, A. X.; Zhang, X. Y.; Yang, Y. W.; Huang, J. X.; Liu, X. J.; Luo, J. Y. Horizontal centripetal plating in the patterned voids of Li/graphene composites for stable lithium-metal anodes. Chem 2018, 4, 2192–2200.

    Article  CAS  Google Scholar 

  3. Wu, M.; Li, Y.; Liu, X.; Yang, S.; Ma, J.; Dou, S. Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat. 2020, 2, 5–11.

    Article  Google Scholar 

  4. Pu, K. C.; Zhang, X.; Qu, X. L.; Hu, J. J.; Li, H. W.; Gao, M. X.; Pan, H. G.; Liu, Y. F. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020, 39, 616–635.

    Article  CAS  Google Scholar 

  5. Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

    Article  CAS  Google Scholar 

  6. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    Article  CAS  Google Scholar 

  7. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  8. Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.

    Article  Google Scholar 

  9. Zhamu, A.; Chen, G. R.; Liu, C. G.; Neff, D.; Fang, Q.; Yu, Z. N.; Xiong, W.; Wang, Y. B.; Wang, X. Q.; Jang, B. Z. Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 2012, 5, 5701–5707.

    Article  CAS  Google Scholar 

  10. Chen, X. R.; Zhao, B. C.; Yan, C.; Zhang, Q. Review on Li deposition in working batteries: From nucleation to early growth. Adv. Mater. 2021, 33, 2004128.

    Article  CAS  Google Scholar 

  11. Chen, X. R.; Yao, Y. X.; Yan, C.; Zhang, R.; Cheng, X. B.; Zhang, Q. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 7743–7747.

    Article  CAS  Google Scholar 

  12. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

    Article  Google Scholar 

  13. Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 2018, 28, 1705838.

    Article  Google Scholar 

  14. Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

    Article  Google Scholar 

  15. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

    Article  CAS  Google Scholar 

  16. Cao, X.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C. J.; Arey, B. W. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 2019, 4, 796–805.

    Article  CAS  Google Scholar 

  17. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

    Article  CAS  Google Scholar 

  18. Wang, D. D.; Liu, H. D.; Li, M. Q.; Xia, D. W.; Holoubek, J.; Deng, Z.; Yu, M. Y.; Tian, J. H.; Shan, Z. Q.; Ong, S. P. et al. A long-lasting dual-function electrolyte additive for stable lithium metal batteries. Nano Energy 2020, 75, 104889.

    Article  CAS  Google Scholar 

  19. Liu, H. D.; Holoubek, J.; Zhou, H. Y.; Chen, A.; Chang, N.; Wu, Z. H.; Yu, S. C.; Yan, Q. Z.; Xing, X.; Li, Y. J. et al. Ultrahigh coulombic efficiency electrolyte enables Li∥span batteries with superior cycling performance. Mater. Today 2020, 42, 17–28.

    Article  Google Scholar 

  20. Liu, H. D.; Zhou, H. Y.; Lee, B. S.; Xing, X.; Gonzalez, M.; Liu, P. Suppressing lithium dendrite growth with a single-component coating. ACS Appl. Mater. Interfaces 2017, 9, 30635–30642.

    Article  CAS  Google Scholar 

  21. Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H.; Huang, Q. Q.; Li, Y. C.; Wang, H. Y.; Kim, S. H. et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Energy 2019, 18, 384–389.

    CAS  Google Scholar 

  22. Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

    Article  CAS  Google Scholar 

  23. Zhou, H. Y.; Yu, S. C.; Liu, H. D.; Liu, P. Protective coatings for lithium metal anodes: Recent progress and future perspectives. J. Power Sources 2020, 450, 227632.

    Article  CAS  Google Scholar 

  24. Liu, H. D.; Yue, X. J.; Xing, X.; Yan, Q. Z.; Huang, J.; Petrova, V; Zhou, H. Y; Liu, P. A scalable 3D lithium metal anode. Energy Storage Mater. 2019, 16, 505–511.

    Article  Google Scholar 

  25. Li, H. P.; Ji, X. Y.; Liang, J. J. Dual-functional ion redistributor for dendrite-free lithium metal anodes. Rare Met. 2020, 39, 861–862.

    Article  CAS  Google Scholar 

  26. Shi, H. D.; Li, Y. G; Lu, P. F.; Wu, Z. S. Single-atom cobalt coordinated to oxygen sites on graphene for stable lithium metal anodes. Acta Phys.-Chim. Sin. 2021, 37, 2008033.

    Google Scholar 

  27. Huang, X.; Feng, X. Y.; Zhang, B.; Zhang, L.; Zhang, S. C.; Gao, B.; Chu, P. K.; Huo, K. F. Lithiated NiCo2O4 nanorods anchored on 3D nickel foam enable homogeneous Li plating/stripping for high-power dendrite-free lithium metal anode. ACS Appl. Mater. Interfaces 2019, 11, 31824–31831.

    Article  CAS  Google Scholar 

  28. Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D. C.; Liu, Y. Y.; Liu, C.; Hsu, P. C.; Bao, Z. N. et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J. Am. Chem. Soc. 2017, 139, 4815–4820.

    Article  CAS  Google Scholar 

  29. Sun, Y. M.; Zheng, G. Y.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 2016, 1, 287–297.

    Article  CAS  Google Scholar 

  30. Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

    Article  CAS  Google Scholar 

  31. Liu, S. F.; Xia, X. H.; Zhong, Y.; Deng, S. J.; Yao, Z. J.; Zhang, L. Y.; Cheng, X. B.; Wang, X. L.; Zhang, Q.; Tu, J. P. 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode. Adv. Energy Mater. 2018, 8, 1702322.

    Article  Google Scholar 

  32. Zhao, Q.; Hao, X. G.; Su, S. M.; Ma, J. B.; Hu, Y.; Liu, Y.; Kang, F. Y.; He, Y. B. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. J. Mater. Chem. A 2019, 7, 15871–15879.

    Article  CAS  Google Scholar 

  33. Zheng, Z. M.; Wu, H. H.; Liu, H. D.; Zhang, Q. B.; He, X.; Yu, S. C.; Petrova, V.; Feng, J.; Kostecki, R.; Liu, P. et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano 2020, 14, 9545–9561.

    Article  CAS  Google Scholar 

  34. Zhang, R.; Shen, X.; Cheng, X. B.; Zhang, Q. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation? Energy Storage Mater. 2019, 23, 556–565.

    Article  Google Scholar 

  35. Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv. Mater. 2019, 31, 1807131.

    Article  Google Scholar 

  36. Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 2018, 8, 1800266.

    Article  Google Scholar 

  37. Yun, Q. B.; He, Y. B; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

    Article  CAS  Google Scholar 

  38. Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431–4437.

    Article  CAS  Google Scholar 

  39. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169.

    Article  CAS  Google Scholar 

  40. Zhang, H.; Liu, Z.; Liang, L.; Chen, L.; Qi, Y.; Harris, S. J.; Lu, P.; Chen, L. Understanding and predicting the lithium dendrite formation in Li-ion batteries: Phase field model. ECS Transactions 2014, 61, 1.

    Article  Google Scholar 

  41. Nan, Y.; Li, S. M.; Shi, Y. Z.; Yang, S. B.; Li, B. Gradient-distributed nucleation seeds on conductive host for a dendrite-free and high-rate lithium metal anode. Small 2019, 15, 1903520.

    Article  CAS  Google Scholar 

  42. Sharifi, T.; Hu, G.; Jia, X. E.; Wagberg, T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012, 6, 8904–8912.

    Article  CAS  Google Scholar 

  43. Rabchinskii, M. K.; Ryzhkov, S. A.; Kirilenko, D. A.; Ulin, N. V.; Baidakova, M. V.; Shnitov, V. V.; Pavlov, S. I.; Chumakov, R. G.; Stolyarova, D. Y.; Besedina, N. A. et al. From graphene oxide towards aminated graphene: Facile synthesis, its structure and electronic properties. Sci. Rep. 2020, 10, 1–12.

    Article  Google Scholar 

  44. Zhang, J.; Li, C. Q.; Peng, Z. K.; Liu, Y. S.; Zhang, J. M.; Liu, Z. Y.; Li, D. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage. Sci. Rep. 2017, 7, 1–7.

    Google Scholar 

  45. Zhang, Q.; Chen, H.; Luo, L.; Zhao, B.; Luo, H.; Han, X.; Wang, J.; Wang, C.; Yang, Y.; Zhu, T.; Liu, M. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ. Sci. 2018, 11, 669–681.

    Article  CAS  Google Scholar 

  46. Cheng, Y.; Zhang, L.; Zhang, Q.; Li, J.; Tang, Y.; Delmas, C.; Zhu, T.; Winter, M.; Wang, M.; Huang, J. Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Mater. Today 2020, 42, 137–161.

    Article  Google Scholar 

  47. Li, Y.; Zhang, Q.; Yuan, Y.; Liu, H.; Yang, C.; Lin, Z.; Lu, J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 2020, 10, 2000717.

    Article  CAS  Google Scholar 

  48. Liu, S.; Wang, A.; Li, Q.; Wu, J.; Chiou, K.; Huang, J.; Luo, J. Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule 2018, 2, 184–193.

    Article  CAS  Google Scholar 

  49. Zhang, C.; Liu, S.; Li, G.; Zhang, C.; Liu, X.; Luo, J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv. Mater. 2018, 30, 1801328.

    Article  Google Scholar 

  50. He, X.; Yang, Y.; Cristian, M. S.; Wang, J.; Hou, X.; Yan, B.; Li, J.; Zhang, T.; Paillard, E.; Swietoslawski, M. et al. Uniform lithium electrodeposition for stable lithium-metal batteries. Nano Energy 2020, 67, 104172.

    Article  CAS  Google Scholar 

  51. Zhao, L.; Wu, H. H.; Yang, C.; Zhang, Q.; Zhong, G.; Zheng, Z.; Chen, H.; Wang, J.; He, K.; Wang, B. et al. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano 2018, 12, 12597–12611.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 52072323 and 51872098) and the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University, as well as Postdoctoral Foundation of China (2018M632929).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin He or Qiaobao Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Wu, HH., Gao, B. et al. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 15, 352–360 (2022). https://doi.org/10.1007/s12274-021-3482-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3482-0

Keywords

Navigation