Skip to main content
Log in

Dehydro-Diels—Alder reaction and diamondization of bowl-shaped clusters C18Te3Br4(Bu-O)6

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Dehydro-Diels—Alder (DDA) reaction is a textbook reaction for preparing six-membered rings in solution but is scarcely seen in solid-state synthesis. In this work, using multiple characterization techniques, we demonstrate that the bowl-shaped clusters C18Te3Br4(Bu-O)6 might experience a DDA reaction at room temperature and high pressure between 5.5 and 7.4 GPa. Above 17.0 GPa, it is found that the bonding conversion from the intramolecular sp2 to the intermolecular sp3 occurred, in the form of pressure-induced diamondization. The recovered samples from 20.0 and 36.1 GPa showed incomplete reversibility, while the decompression-induced graphitization of glassy carbon was observed during decompression from 46.5 GPa. The electrochemical impedance spectroscopy results indicated that the transport properties changed from grain boundary dominant to grain dominant due to the DDA reaction and the grain boundary effect disappeared as the intermolecular sp3 bonding building-up and carrier transmission channel formation above 17.0 GPa. The results in this study open a new route to construct the crystalline carbon materials with different transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. R.; Yu, F.; Xie, J.; Zhao, J. F.; Zou, Y.; Wang, Z. P.; Zhang, Q. C. Insights into the control of optoelectronic properties in mixed-stacking charge-transfer complexes. Chem.—Eur. J. 2020, 26, 3578–3585.

    Article  CAS  Google Scholar 

  2. Dong, H. L.; Zhu, H. F.; Meng, Q.; Gong, X.; Hu, W. P. Organic photoresponse materials and devices. Chem. Soc. Rev. 2012, 41, 1754–1808.

    Article  CAS  Google Scholar 

  3. Sun, Y. G.; Wang, L.; Liu, Y. Z.; Ren, Y. Birnessite-type MnO2 nanosheets with layered structures under high pressure: Elimination of crystalline stacking faults and oriented laminar assembly. Small 2015, 11, 300–305.

    Article  CAS  Google Scholar 

  4. Zhang, L. J.; Wang, Y. C.; Lv, J.; Ma, Y. M. Materials discovery at high pressures. Nat. Rev. Mater. 2017, 2, 17005.

    Article  CAS  Google Scholar 

  5. Mao, H. K.; Chen, X. J.; Ding, Y.; Li, B.; Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 2018, 90, 015007.

    Article  CAS  Google Scholar 

  6. Ceppatelli, M.; Santoro, M.; Bini, R.; Schettino, V. High pressure reactivity of solid furan probed by infrared and Raman spectroscopy. J. Chem. Phys. 2003, 118, 1499–1506.

    Article  CAS  Google Scholar 

  7. Sun, J. M.; Dong, X.; Wang, Y. J.; Li, K.; Zheng, H. Y.; Wang, L. J.; Cody, G. D.; Tulk, C. A.; Molaison, J. J.; Lin, X. H. et al. Pressure-induced polymerization of acetylene: Structure-directed stereoselectivity and a possible route to graphane. Angew. Chem., Int. Ed. 2017, 56, 6553–6557.

    Article  CAS  Google Scholar 

  8. Zhao, X. M.; Zhong, G. H.; Zhang, J.; Huang, Q. W.; Goncharov, A. F.; Lin, H. Q.; Chen, X. J. Combined experimental and computational study of high-pressure behavior of triphenylene. Sci. Rep. 2016, 6, 25600.

    Article  CAS  Google Scholar 

  9. Ray, P.; Gray, J. L.; Badding, J. V.; Lueking, A. D. High-pressure reactivity of triptycene probed by Raman spectroscopy. J. Phys. Chem. B 2016, 120, 11035–11042.

    Article  CAS  Google Scholar 

  10. Ciabini, L.; Santoro, M.; Bini, R.; Schettino, V. High pressure reactivity of solid benzene probed by infrared spectroscopy. J. Chem. Phys. 2002, 116, 2928–2935.

    Article  CAS  Google Scholar 

  11. Ke, F.; Chen, Y. B.; Yin, K. T.; Yan, J. J.; Zhang, H. Z.; Liu, Z. X.; Tse, J. S.; Wu, J. Q.; Mao, H. K.; Chen, B. Large bandgap of pressurized trilayer graphene. Proc. Natl. Acad. Sci. USA 2019, 116, 9186–9190.

    Article  CAS  Google Scholar 

  12. Samanta, S.; Lee, M.; Kim, D. S.; Kim, J.; Wang, L. High-pressure triggered quantum tunneling tuning through classical percolation in a single nanowire of a binary composite. Nano Res. 2019, 12, 1333–1338.

    Article  CAS  Google Scholar 

  13. Ciabini, L.; Santoro, M.; Gorelli, F. A.; Bini, R.; Schettino, V.; Raugei, S. Triggering dynamics of the high-pressure benzene amorphization. Nat. Mater. 2007, 6, 39–43.

    Article  CAS  Google Scholar 

  14. Wang, Y. J.; Wang, L. J.; Zheng, H. Y.; Li, K.; Andrzejewski, M.; Hattori, T.; Sano-Furukawa, A.; Katrusiak, A.; Meng, Y. F.; Liao, F. H. et al. Phase transitions and polymerization of C6H6—C6F6 cocrystal under extreme conditions. J. Phys. Chem. C 2016, 120, 29510–29519.

    Article  CAS  Google Scholar 

  15. Wang, Y. J.; Dong, X.; Tang, X. Y.; Zheng, H. Y.; Li, K.; Lin, X. H.; Fang, L. M.; Sun, G. A.; Chen, X. P.; Xie, L. et al. Pressure-induced Diels—Alder reactions in C6H6—C6F6 cocrystal towards graphane structure. Angew. Chem., Int. Ed. 2019, 58, 1468–1473.

    Article  CAS  Google Scholar 

  16. Aust, R. B.; Bentley, W. H.; Drickamer, H. G. Behavior of fused-ring aromatic hydrocarbons at very high pressure. J. Chem. Phys. 1964, 41, 1856–1864.

    Article  CAS  Google Scholar 

  17. Davydov, V. A.; Rakhmanina, A. V.; Agafonov, V.; Narymbetov, B.; Boudou, J. P.; Szwarc, H. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures. Carbon 2004, 42, 261–269.

    Article  CAS  Google Scholar 

  18. Wang, L.; Liu, B. B.; Li, H.; Yang, W. G.; Ding, Y.; Sinogeikin, S. V.; Meng, Y.; Liu, Z. X.; Zeng, X. C.; Mao, W. L. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks. Science 2012, 337, 825–828.

    Article  CAS  Google Scholar 

  19. Li, B.; Zhang, J. B.; Yan, Z. P.; Feng, M. N.; Yu, Z. H.; Wang, L. Pressure-induced dimerization of C60 at room temperature as revealed by an in situ spectroscopy study using an infrared laser. Crystals 2020, 10, 182.

    Article  CAS  Google Scholar 

  20. Pei, C. Y.; Feng, M. N.; Yang, Z. X.; Yao, M. G.; Yuan, Y.; Li, X.; Hu, B. W.; Shen, M.; Chen, B.; Sundqvist, B. et al. Quasi 3D polymerization in C60 bilayers in a fullerene solvate. Carbon 2017, 124, 499–505.

    Article  CAS  Google Scholar 

  21. Wang, L.; Liu, B.; Liu, D.; Hou, Y.; Yao, M.; Zou, G.; Li, H.; Luo, C.; Li, Y.; Liu, J. High pressure studies of nano/sub-micrometer C70 rods. Chin. Phys. C: High Energy Phys. Nucl. Phys. 2005, 29, 112–115.

    CAS  Google Scholar 

  22. Chen, J. Y.; Kim, M.; Yoo, C. S. High structural stability of single wall carbon nanotube under quasi-hydrostatic high pressures. Chem. Phys. Lett. 2009, 479, 91–94.

    Article  CAS  Google Scholar 

  23. Iizumi, Y.; Liu, Z.; Suenaga, K.; Okada, S.; Higashibayashi, S.; Sakurai, H.; Okazaki, T. Molecular arrangements of corannulene and sumanene in single-walled carbon nanotubes. ChemNanoMat 2018, 4, 557–561.

    Article  CAS  Google Scholar 

  24. Okazaki, T.; Iizumi, Y.; Okubo, S.; Kataura, H.; Liu, Z.; Suenaga, K.; Tahara, Y.; Yudasaka, M.; Okada, S.; Iijima, S. Coaxially stacked coronene columns inside single-walled carbon nanotubes. Angew. Chem., Int. Ed. 2011, 50, 4853–4857.

    Article  CAS  Google Scholar 

  25. Alvarez, L.; Le Parc, R.; Jourdain, V.; Dennler, S.; Bantignies, J. L.; Sauvajol, J. L.; Rose, J. A.; Scott, L. T. Temperature dependence and pressure dependence of the vibrational properties of corannulene. Phys. Status Solidi (B) 2008, 245, 2261–2263.

    Article  CAS  Google Scholar 

  26. Du, M. R.; Dong, J. J.; Zhang, Y.; Yang, X. G.; Li, Z. P.; Wang, M. C.; Liu, R.; Liu, B.; Zhou, Q. J.; Wei, T. et al. Vibrational properties and polymerization of corannulene under pressure, probed by Raman and infrared spectroscopies. J. Phys. Chem. C 2019, 123, 23674–23681.

    Article  CAS  Google Scholar 

  27. Hanson, J. C.; Nordman, C. E. The crystal and molecular structure of corannulene, C20H10. Acta Cryst. B 1976, 32, 1147–1153.

    Article  Google Scholar 

  28. Shang, Y. C.; Liu, Z. D.; Dong, J. J.; Yao, M. G.; Yang, Z. X.; Li, Q. J.; Zhai, C. G.; Shen, F. R.; Hou, X. Y.; Wang, L. et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature 2021, 599, 599–604.

    Article  CAS  Google Scholar 

  29. Tang, H.; Yuan, X. H.; Cheng, Y.; Fei, H. Z.; Liu, F. Y.; Liang, T.; Zeng, Z. D.; Ishii, T.; Wang, M. S.; Katsura, T. et al. Synthesis of paracrystalline diamond. Nature 2021, 599, 605–610.

    Article  CAS  Google Scholar 

  30. Li, X. X.; Zhu, Y. T.; Shao, J. F.; Wang, B. L.; Zhang, S. X.; Shao, Y. L.; Jin, X. J.; Yao, X. J.; Fang, R.; Shao, X. F. Non-pyrolytic, large-scale synthesis of trichalcogenasumanene: A two-step approach. Angew. Chem., Int. Ed. 2014, 53, 535–538.

    Article  CAS  Google Scholar 

  31. Wang, S. T.; Li, X. X.; Hou, X. Q.; Sun, Y. T.; Shao, X. F. Tritellurasumanene: Ultrasound assisted one-pot synthesis and extended valence adducts with bromine. Chem. Commun. 2016, 52, 14486–14489.

    Article  CAS  Google Scholar 

  32. McCormick, T. M.; Jahnke, A. A.; Lough, A. J.; Seferos, D. S. Tellurophenes with delocalized π-systems and their extended valence adducts. J. Am. Chem. Soc. 2012, 134, 3542–3548.

    Article  CAS  Google Scholar 

  33. Mao, H. K.; Xu, J.; Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res.:Solid Earth 1986, 91, 4673–4676.

    Article  CAS  Google Scholar 

  34. Rahman, S.; Saqib, H.; Zhang, J. B.; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, S.; Li, X. D.; Lu, J. L.; Wang, L. Pressure-induced structural and semiconductor-semiconductor transitions in Co0.5Mg0.5Cr2O4. Phys. Rev. B 2018, 97, 174102.

    Article  CAS  Google Scholar 

  35. Prescher, C.; Prakapenka, V. B. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 2015, 35, 223–230.

    Article  CAS  Google Scholar 

  36. Dischler, B.; Bubenzer, A.; Koidl, P. Bonding in hydrogenated hard carbon studied by optical spectroscopy. Solid State Commun. 1983, 48, 105–108.

    Article  CAS  Google Scholar 

  37. Dischler, B; Bubenzer, A.; Koidl, P. Hard carbon coatings with low optical absorption. Appl. Phys. Lett. 1983, 42, 636–638.

    Article  CAS  Google Scholar 

  38. Zhang, P. J.; Tang, X. Y.; Wang, Y. D.; Wang, X.; Gao, D. X.; Li, Y. P.; Zheng, H. Y.; Wang, Y. J.; Wang, X. X.; Fu, R. Q. et al. Distance-selected topochemical dehydro-Diels—Alder reaction of 1, 4-diphenylbutadiyne toward crystalline graphitic nanoribbons. J. Am. Chem. Soc. 2020, 142, 17662–17669.

    Article  CAS  Google Scholar 

  39. Chanyshev, A. D.; Litasov, K. D.; Shatskiy, A. F.; Ohtani, E. In situ X-ray diffraction study of decomposition of polycyclic aromatic hydrocarbons at pressures of 7–15 GPa: Implication to fluids under the Earth’s and planetary environments. Chem. Geol. 2015, 405, 39–47.

    Article  CAS  Google Scholar 

  40. Kvashnin, A. G.; Chernozatonskii, L. A.; Yakobson, B. I.; Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 2014, 14, 676–681.

    Article  CAS  Google Scholar 

  41. Mimura, K.; Toyama, S.; Sugitani, K. Shock-induced dehydrogenation of polycyclic aromatic hydrocarbons with or without serpentine: Implications for planetary accretion. Earth Planet. Sci. Lett. 2005, 232, 143–156.

    Article  CAS  Google Scholar 

  42. Sun, B.; Dreger, Z. A.; Gupta, Y. M. High-pressure effects in pyrene crystals: Vibrational spectroscopy. J. Phys. Chem. A 2008, 112, 10546–10551.

    Article  CAS  Google Scholar 

  43. Schindler, T. L.; Vohra, Y. K. A micro-Raman investigation of high-pressure quenched graphite. J. Phys.:Condens. Matter 1996, 8, 3963.

    Google Scholar 

  44. Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

    Article  CAS  Google Scholar 

  45. Goncharov, A. F.; Makarenko, I. N.; Stishov, S. M. Graphite at pressures up to 55 GPa: Optical properties and Raman scattering-amorphous carbon. Sov. Phys. JETP 1989, 69, 380–381.

    Google Scholar 

  46. Wang, Y. J.; Panzik, J. E.; Kiefer, B.; Lee, K. K. M. Crystal structure of graphite under room-temperature compression and decompression. Sci. Rep. 2012, 2, 520.

    Article  Google Scholar 

  47. Yao, M. G.; Xiao, J. P.; Fan, X. H.; Liu, R.; Liu, B. B. Transparent, superhard amorphous carbon phase from compressing glassy carbon. Appl. Phys. Lett. 2014, 104, 021916.

    Article  Google Scholar 

  48. Barboza, A. P. M.; Guimaraes, M. H. D.; Massote, D. V. P.; Campos, L. C.; Neto, N. M. B.; Cancado, L. G.; Lacerda, R. G.; Chacham, H.; Mazzoni, M. S. C.; Neves, B. R. A. Room-temperature compression-induced diamondization of few-layer graphene. Adv. Mater. 2011, 23, 3014–3017.

    Article  CAS  Google Scholar 

  49. Shiell, T. B.; McCulloch, D. G.; McKenzie, D. R.; Field, M. R.; Haberl, B.; Boehler, R.; Cook, B. A.; de Tomas, C.; Suarez-Martinez, I.; Marks, N. A. et al. Graphitization of glassy carbon after compression at room temperature. Phys. Rev. Lett. 2018, 120, 215701.

    Article  CAS  Google Scholar 

  50. Lim, J.; Yoo, C. S. Intercalation of solid hydrogen into graphite under pressures. Appl. Phys. Lett. 2016, 109, 051905.

    Article  Google Scholar 

  51. Lin, Y.; Zhang, L.; Mao, H. K.; Chow, P.; Xiao, Y. M.; Baldini, M.; Shu, J. F.; Mao, W. L. Amorphous diamond: A high-pressure superhard carbon allotrope. Phys. Rev. Lett. 2011, 107, 175504.

    Article  Google Scholar 

  52. Clark, S. M.; Jeon, K. J.; Chen, J. Y.; Yoo, C. S. Few-layer graphene under high pressure: Raman and X-ray diffraction studies. Solid State Commun. 2013, 154, 15–18.

    Article  CAS  Google Scholar 

  53. Garbarczyk, J. E.; Wasiucionek, M.; Machowski, P.; Jakubowski, W. Transition from ionic to electronic conduction in silver—vanadate—phosphate glasses. Solid State Ion. 1999, 119, 9–14.

    Article  CAS  Google Scholar 

  54. Tuller, H. L. Ionic conduction in nanocrystalline materials. Solid State Ion. 2000, 131, 143–157.

    Article  CAS  Google Scholar 

  55. Miller, E. D.; Nesting, D. C.; Badding, J. V. Quenchable transparent phase of carbon. Chem. Mater. 1997, 9, 18–22.

    Article  CAS  Google Scholar 

  56. Wu, J. H.; Wang, S. Y.; Lei, Z. W.; Guan, R. N.; Chen, M. Q.; Du, P. W.; Lu, Y. L.; Cao, R. G.; Yang, S. F. Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery. Nano Res. 2021, 14, 2596–2605.

    Article  CAS  Google Scholar 

  57. Soler-Piña, F. J.; Hernández-Rentero, C.; Caballero, A.; Morales, J.; Canales-Vázquez, J. Highly graphitized carbon nanosheets with embedded Ni nanocrystals as anode for Li-ion batteries. Nano Res. 2020, 13, 86–94.

    Article  Google Scholar 

  58. Li, G. C.; Yin, Z. L.; Dai, Y. Q.; You, B. Z.; Guo, H. J.; Wang, Z. X.; Yan, G. C.; Liu, Y.; Wang, J. X. Graphitic nanorings for superlong lifespan lithium-ion capacitors. Nano Res. 2020, 13, 2909–2916.

    Article  CAS  Google Scholar 

  59. Li, H. Y.; Zhang, L. H.; Li, L.; Wu, C. W.; Huo, Y. J.; Chen, Y.; Liu, X. J.; Ke, X. X.; Luo, J.; Van Tendeloo, G. Two-in-one solution using insect wings to produce graphene—graphite films for efficient electrocatalysis. Nano Res. 2019, 12, 33–39.

    Article  CAS  Google Scholar 

  60. Zhao, X. W.; Wu, Y. Z.; Wang, Y. S.; Wu, H. S.; Yang, Y. W.; Wang, Z. P.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Res. 2020, 13, 1044–1052.

    Article  CAS  Google Scholar 

  61. Mao, W. L.; Mao, H. K.; Eng, P. J.; Trainor, T. P.; Newville, M.; Kao, C. C.; Heinz, D. L.; Shu, J. F.; Meng, Y.; Hemley, R. J. Bonding changes in compressed superhard graphite. Science 2003, 302, 425–427.

    Article  CAS  Google Scholar 

  62. Harris, P. J. F. Fullerene-related structure of commercial glassy carbons. Philos. Mag. 2004, 84, 3159–3167.

    Article  CAS  Google Scholar 

  63. Townsend, S. J.; Lenosky, T. J.; Muller, D. A.; Nichols, C. S.; Elser, V. Negatively curved graphitic sheet model of amorphous carbon. Phys. Rev. Lett. 1992, 69, 921–924.

    Article  CAS  Google Scholar 

  64. Martin, J. W.; Slavchov, R. I.; Yapp, E. K. Y.; Akroyd, J.; Mosbach, S.; Kraft, M. The polarization of polycyclic aromatic hydrocarbons curved by pentagon incorporation: The role of the flexoelectric dipole. J. Phys. Chem. C 2017, 121, 27154–27163.

    Article  CAS  Google Scholar 

  65. Wentorf, R. H. Jr. The behavior of some carbonaceous materials at very high pressures and high temperatures. J. Phys. Chem. 1965, 69, 3063–3069.

    Article  CAS  Google Scholar 

  66. Compagnini, G.; Calcagno, L.; Foti, G. Hydrogen effect on atomic configuration of keV-ion-irradiated carbon. Phys. Rev. Lett. 1992, 69, 454–457.

    Article  CAS  Google Scholar 

  67. Martins, L. G. P.; Matos, M. J. S.; Paschoal, A. R.; Freire, P. T. C.; Andrade, N. F.; Aguiar, A. L.; Kong, J.; Neves, B. R. A.; de Oliveira, A. B.; Mazzoni, M. S. C. et al. Raman evidence for pressure-induced formation of diamondene. Nat. Commun. 2017, 8, 96.

    Article  Google Scholar 

  68. Gao, Y.; Ma, Y. Z.; An, Q.; Levitas, V.; Zhang, Y. Y.; Feng, B.; Chaudhuri, J.; Goddard III, W. A. Shear driven formation of nano-diamonds at sub-gigapascals and 300 K. Carbon 2099, 146, 364–368.

    Article  Google Scholar 

  69. Dong, J. J.; Yao, Z.; Yao, M. G.; Li, R.; Hu, K.; Zhu, L. Y.; Wang, Y.; Sun, H. H.; Sundqvist, B.; Yang, K. et al. Decompression-induced diamond formation from graphite sheared under pressure. Phys. Rev. Lett. 2020, 124, 065701.

    Article  CAS  Google Scholar 

  70. Solopova, N. A.; Dubrovinskaia, N.; Dubrovinsky, L. Raman spectroscopy of glassy carbon up to 60 GPa. Appl. Phys. Lett. 2013, 102, 121909.

    Article  Google Scholar 

  71. Jackson, B. R.; Trout, C. C.; Badding, J. V. UV Raman analysis of the C: H network formed by compression of benzene. Chem. Mater. 2003, 15, 1820–1824.

    Article  CAS  Google Scholar 

  72. Fujikawa, T.; Preda, D. V.; Segawa, Y.; Itami, K.; Scott, L. T. Corannulene-helicene hybrids: Chiral π-systems comprising both bowl and helical motifs. Org. Lett. 2016, 18, 3992–3995.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52090020 and 11874076) and the National Research Foundation of Korea (Nos. 2016K1A4A3914691 and 2018R1DA1B070498).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Li Zhang, Jaeyong Kim or Lin Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ma, M., Zhou, R. et al. Dehydro-Diels—Alder reaction and diamondization of bowl-shaped clusters C18Te3Br4(Bu-O)6. Nano Res. 15, 4606–4612 (2022). https://doi.org/10.1007/s12274-022-4215-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4215-8

Keywords

Navigation