Skip to main content
Log in

High-pressure triggered quantum tunneling tuning through classical percolation in a single nanowire of a binary composite

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the era of miniaturization, the one-dimensional nanostructures presented numerous possibilities to realize operational nanosensors and devices by tuning their electrical transport properties. Upon size reduction, the physical properties of materials become extremely challenging to characterize and understand due to the complex interplay among structures, surface properties, strain effects, distribution of grains, and their internal coupling mechanism. In this report, we demonstrate the fabrication of a single metal-carbon composite nanowire inside a diamond-anvil-cell and examine the in situ pressure-driven electrical transport properties. The nanowire manifests a rapid and reversible pressure dependence of the strong nonlinear electrical conductivity with significant zero-bias differential conduction revealing a quantum tunneling dominant carrier transport mechanism. We fully rationalize our observations on the basis of a metal-carbon framework in a highly compressed nanowire corroborating a quantum-tunneling boundary, in addition to a classical percolation boundary that exists beyond the percolation threshold. The structural phase progressions were monitored to evidence the pressure-induced shape reconstruction of the metallic grains and modification of their intergrain interactions for successful explanation of the electrical transport behavior. The pronounced sensitivity of electrical conductivity to an external pressure stimulus provides a rationale to design low-dimensional advanced pressure sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, X.; Yuan, L. Y.; Zhong, J. W.; Ding, T. P.; Liu, Y.; Cai, Z. X.; Rong, Y. G.; Han, H. W.; Zhou, J.; Wang, Z. L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 2011, 23, 5440–5444.

    Article  Google Scholar 

  2. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

    Article  Google Scholar 

  3. Cai, J. Z.; Lu, L.; Kong, W. J.; Zhu, H. W.; Zhang, C.; Wei, B. Q.; Wu, D. H.; Liu, F. Pressure-induced transition in magnetoresistance of single-walled carbon nanotubes. Phys. Rev. Lett. 2006, 97, 026402.

    Article  Google Scholar 

  4. Cohen, D. J.; Mitra, D.; Peterson, K.; Maharbiz, M. M. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012, 12, 1821–1825.

    Article  Google Scholar 

  5. Ozden, S.; Autreto, P. A. S.; Tiwary, C. S.; Khatiwada, S.; Machado, L.; Galvao, D. S.; Vajtai, R.; Barrera, E. V.; Ajayan, M. P. Unzipping carbon nanotubes at high impact. Nano Lett. 2014, 14, 4131–4137.

    Article  Google Scholar 

  6. Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

    Article  Google Scholar 

  7. Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

    Article  Google Scholar 

  8. Kim, K. K.; Hong, S.; Cho, H. M.; Lee, J.; Suh, Y. D.; Ham, J.; Ko, S. H. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 2015, 15, 5240–5247.

    Article  Google Scholar 

  9. Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y. D.; Lim, H.; Kim, S. Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697.

    Article  Google Scholar 

  10. Jibril, L.; Ramírez, J.; Zaretski, A. V.; Lipomi, D. J. Single-nanowire strain sensors fabricated by nanoskiving. Sens. Actuators A Phys. 2017, 263, 702–706.

    Article  Google Scholar 

  11. Jeon, J.; Lee, H. B. R.; Bao, Z. N. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 2013, 25, 850–855.

    Article  Google Scholar 

  12. Chen, Z.; Pfattner, R.; Bao, Z. N. Characterization and understanding of thermoresponsive polymer composites based on spiky nanostructured fillers. Adv. Electron. Mater. 2017, 3, 1600397.

    Article  Google Scholar 

  13. Bartlett, M. D.; Kazem, N.; Powell-Palm, M. J.; Huang, X. N.; Sun, W. H.; Malen, J. A.; Majidi, C. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. USA 2017, 114, 2143–2148.

    Article  Google Scholar 

  14. Paul, R.; Dai, L. M. Interfacial aspects of carbon composites. Compos. Int. 2018, 25, 539–605.

    Article  Google Scholar 

  15. Zaretski, A. V.; Root, S. E.; Savchenko, A.; Molokanova, E.; Printz, A. D.; Jibril, L.; Arya, G.; Mercola, M.; Lipomi, D. J. Metallic nanoislands on graphene as highly sensitive transducers of mechanical, biological, and optical signals. Nano Lett. 2016, 16, 1375–1380.

    Article  Google Scholar 

  16. Mikheykin, A. S.; Dmitriev, V. P.; Chagovets, S. V.; Kuriganova, A. B.; Smirnova, N. V.; Leontyev, I. N. The compressibility of nanocrystalline Pt. Appl. Phys. Lett. 2012, 101, 173111.

    Article  Google Scholar 

  17. Yang, X.; Hu, J.; Chen, S. M.; He, J. L. Understanding the percolation characteristics of nonlinear composite dielectrics. Sci. Rep. 2016, 6, 30597.

    Article  Google Scholar 

  18. Fostner, S.; Brown, R.; Carr, J.; Brown, S. A. Continuum percolation with tunneling. Phys. Rev. B 2014, 89, 075402.

    Article  Google Scholar 

  19. Balberg, I. Tunneling and nonuniversal conductivity in composite materials. Phys. Rev. Lett. 1987, 59, 1305–1308.

    Article  Google Scholar 

  20. Toker, D.; Azulay, D.; Shimoni, N.; Balberg, I.; Millo, O. Tunneling and percolation in metal-insulator composite materials. Phys. Rev. B 2003, 68, 041403.

    Article  Google Scholar 

  21. Schwalb, C. H.; Grimm, C.; Baranowski, M.; Sachser, R.; Porrati, F.; Reith, H.; Das, P.; Müller, J.; Völklein, F.; Kaya, A. et al. A tunable strain sensor using nanogranular metals. Sensors 2010, 10, 9847–9856.

    Article  Google Scholar 

  22. Park, J. H.; Steingart, D. A.; Kodambaka, S.; Ross, F. M. Electrochemical electron beam lithography: Write, read, and erase metallic nanocrystals on demand. Sci. Adv. 2017, 3, e1700234.

    Article  Google Scholar 

  23. Córdoba, R.; Ibarra, A.; Mailly, D.; Ma De Teresa, J. Vertical growth of superconducting crystalline hollow nanowires by He+ focused ion beam induced deposition. Nano Lett. 2018, 18, 1379–1386.

    Article  Google Scholar 

  24. Fernández-Pacheco, A.; De Teresa, J. M.; Córdoba, R.; Ibarra, M. R. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beaminduced deposition. Phys. Rev. B 2009, 79, 174209.

    Article  Google Scholar 

  25. Beloborodov, I. S.; Efetov, K. B.; Lopatin, A. V.; Vinokur, V. M. Transport properties of granular metals at low temperatures. Phys. Rev. Lett. 2003, 91, 246801.

    Article  Google Scholar 

  26. Liao, Z. M.; Xu, J.; Zhang, X. Z.; Yu, D. P. The relationship between quantum transport and microstructure evolution in carbon-sheathed Pt granular metal nanowires. Nanotechnology 2008, 19, 305402.

    Article  Google Scholar 

  27. Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M.; Efetov, K. B. Granular electronic systems. Rev. Mod. Phys. 2007, 79, 469–518.

    Article  Google Scholar 

  28. Kolb, F.; Schmoltner, K.; Huth, M.; Hohenau, A.; Krenn, J.; Klug, A.; List, E. J. W.; Plank, H. Variable tunneling barriers in FEBID based PtC metal-matrix nanocomposites as a transducing element for humidity sensing. Nanotechnology 2013, 24, 305501.

    Article  Google Scholar 

  29. Durkan, C.; Welland, M. E. Size effects in the electrical resistivity of polycrystalline nanowires. Phys. Rev. B 2000, 61, 14215–14218.

    Article  Google Scholar 

  30. Prasad Manoharan, M.; Kumar, S.; Haque, M. A.; Rajagopalan, R.; Foley, H. C. Room temperature amorphous to nanocrystalline transformation in ultra-thin films under tensile stress: An in situ TEM study. Nanotechnology 2010, 21, 505707.

    Article  Google Scholar 

  31. Zhu, J.; Quan, Z.; Wang, C.; Wen, X.; Jiang, Y.; Fang, J.; Wang, Z.; Zhao, Y.; Xu, H. Structural evolution and mechanical behaviour of Pt nanoparticle superlattices at high pressure. Nanoscale 2016, 8, 5214–5218.

    Article  Google Scholar 

  32. Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.

    Article  Google Scholar 

  33. https://doi.org/www.almax-easylab.com/WebsitePatternedAnvils01.aspx. [Dear author, please complete this ref.,thanks]

  34. Kiuchi, M.; Matsui, S.; Isono, Y. The piezoresistance effect of FIB-deposited carbon nanowires under severe strain. J. Micromech. Microeng. 2008, 18, 065011.

    Article  Google Scholar 

  35. Chakravorty, M.; Das, K.; Raychaudhuri, A. K.; Naik, J. P.; Prewett, P. D. Temperature dependent resistivity of platinum–carbon composite nanowires grown by focused ion beam on SiO2/Si substrate. Microelectron. Eng. 2011, 88, 3360–3364.

    Article  Google Scholar 

  36. Faraby, H.; DiBattista, M.; Bandaru, P. R. Percolation of gallium dominates the electrical resistance of focused ion beam deposited metals. Appl. Phys. Lett. 2014, 104, 173107.

    Article  Google Scholar 

  37. Barzola-Quiquia, J.; Schulze, S.; Esquinazi, P. Transport properties and atomic structure of ion-beam-deposited W, Pd and Pt nanostructures. Nanotechnology 2009, 20, 165704.

    Article  Google Scholar 

  38. Lin, J. F.; Bird, J. P.; Rotkina, L.; Bennett, P. A. Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects. Appl. Phys. Lett. 2003, 82, 802–804.

    Article  Google Scholar 

  39. Peñate-Quesada, L.; Mitra, J.; Dawson, P. Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology 2007, 18, 215203.

    Article  Google Scholar 

  40. He, R. R.; Yang, P. D. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46.

    Article  Google Scholar 

  41. De Teresa, J. M.; Córdoba, R.; Fernández-Pacheco, A.; Montero, O.; Strichovanec, P.; Ibarra, M. R. Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt nanodeposits. J. Nanomater. 2009, 2009, 936863.

    Article  Google Scholar 

  42. Vaz, A. R.; da Silva, M. M.; Leon, J.; Moshkalev, S. A.; Swart, J. W. Platinum thin films deposited on silicon oxide by focused ion beam: Characterization and application. J. Mater. Sci. 2008, 43, 3429–3434.

    Article  Google Scholar 

  43. Lin, J. F.; Bird, J. P.; Rotkina, L.; Sergeev, A.; Mitin, V. Large effects due to electron–phonon-impurity interference in the resistivity of Pt/C-Ga composite nanowires. Appl. Phys. Lett. 2004, 84, 3828–3830.

    Article  Google Scholar 

  44. Wei, Y. X.; Wang, R. J.; Wang, W. H. Soft phonons and phase transition in amorphous carbon. Phys. Rev. B 2005, 72, 012203.

    Article  Google Scholar 

  45. Hoppel, C. P. R.; Bogetti, T. A.; Gillespie, J. W. Jr. Literature review-effects of hydrostatic pressure on the mechanical behavior of composite materials. J. Thermoplast. Compos. Mater. 1995, 8, 375–409.

    Article  Google Scholar 

  46. Bousige, C.; Balima, F.; Machon, D.; Pinheiro, G. S.; Torres-Dias, A.; Nicolle, J.; Kalita, D.; Bendiab, N.; Marty, L.; Bouchiat, V. et al. Biaxial strain transfer in supported graphene. Nano Lett. 2017, 17, 21–27.

    Article  Google Scholar 

  47. Rotundu, C. R.; Cuk, T.; Greene, R. L.; Shen, Z. X.; Hemley, R. J.; Struzhkin, V. V. High-pressure resistivity technique for quasi-hydrostatic compression experiments. Rev. Sci. Instrum. 2013, 84, 063903.

    Article  Google Scholar 

  48. Sun, L.; Wu, Q. Pressure-induced exotic states in rare earth hexaborides. Rep. Prog. Phys. 2016, 79, 084503.

    Article  Google Scholar 

  49. Dukic, M.; Winhold, M.; Schwalb, C. H.; Adams, J. D.; Stavrov, V.; Huth, M.; Fantner, G. E. Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers. Nat. Commun. 2016, 7, 12487.

    Article  Google Scholar 

  50. Lau, D. W.; McCulloch, D. G.; Taylor, M. B.; Partridge, J. G.; McKenzie, D. R.; Marks, N. A.; Teo, E. H. T.; Tay, B. K. Abrupt stress induced transformation in amorphous carbon films with a highly conductive transition phase. Phys. Rev. Lett. 2008, 100, 176101.

    Article  Google Scholar 

  51. Nishi, Y.; Hirano, M. Bending stress dependent electrical resistivity of carbon fiber in polymer for health monitoring system. Mater. Trans. 2007, 48, 2735–2738.

    Article  Google Scholar 

  52. Li, X. Y.; Mao, H. K. Solid carbon at high pressure: Electrical resistivity and phase transition. Phys. Chem. Miner. 1994, 21, 1–5.

    Google Scholar 

  53. Sagar, R. U. R.; Zhang, X. Z.; Xiong, C. Y.; Yu, Y. Semiconducting amorphous carbon thin films for transparent conducting electrodes. Carbon 2014, 76, 64–70.

    Article  Google Scholar 

  54. Chang, K. C.; Odagaki, T. Localization and tunneling effects in percolating systems. Phys. Rev. B 1987, 35, 2598–2603.

    Article  Google Scholar 

  55. Huth, M.; Porrati, F.; Schwalb, C.; Winhold, M.; Sachser, R.; Dukic, M.; Adams, J.; Fantner, G. Focused electron beam induced deposition: A perspective. Beilstein J. Nanotechnol. 2012, 3, 597–619.

    Article  Google Scholar 

  56. Agraït, N.; Yeyati A. L.; van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81–279.

    Article  Google Scholar 

  57. Nenashev, A. V.; Jansson, F.; Baranovskii, S. D.; Österbacka, R.; Dvurechenskii, A. V.; Gebhard, F. Hopping conduction in strong electric fields: Negative differential conductivity. Phys. Rev. B 2008, 78, 165207.

    Article  Google Scholar 

  58. Park, C. H.; Lee, S. Y.; Hwang, D. S.; Shin, D. W.; Cho, D. H.; Lee, K. H.; Kim, T. W.; Kim, T. W.; Lee, M.; Kim, D. S. et al. Nanocrack-regulated self-humidifying membranes. Nature 2016, 532, 480–483.

    Article  Google Scholar 

Download references

Acknowledgements

This work was mainly supported by the National Natural Science Foundation of China (No. 11874076), the National Science Associated Funding (NSAF) (No. U1530402), and Science Challenging Program (No. TZ2016001). S. S. would also like to thank Dr. Christophe Thissieu from Almax easyLab Inc, MA, Cambridge, USA for providing the designer diamond anvils for the experiments. S. S. would like to thank Dr. Ankita Ghatak, S. N. Bose National Centre for Basic Sciences, Kolkata, India for the analysis and discussion on HRTEM data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Electronic supplementary material

12274_2019_2295_MOESM1_ESM.pdf

High-pressure triggered quantum tunneling tuning through classical percolation in a single nanowire of a binary composite

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S., Lee, M., Kim, DS. et al. High-pressure triggered quantum tunneling tuning through classical percolation in a single nanowire of a binary composite. Nano Res. 12, 1333–1338 (2019). https://doi.org/10.1007/s12274-019-2295-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2295-x

Keywords

Navigation