Skip to main content
Log in

Tunable electrical properties of C60·m-xylene and the formation of semiconducting ordered amorphous carbon clusters under pressure

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ordered amorphous carbon clusters (OACC) transformed from m-xylene solvated C60 (C60·m-xylene) are known as the first crystalline material constructed from amorphous building blocks and have attracted a lot of attention. The formation mechanism and physical properties of this material are of great importance for the design of more materials with such structural characteristics. In this article, the transport and structural properties of C60·m-xylene are systematically investigated under pressure using impedance spectroscopy, four-probe resistance measurements, and Raman spectroscopy. It is found that C60·m-xylene is an insulator at ambient pressure. The resistance decreases sharply starting at the pressure around 8 GPa due to the pressure-induced dimerization of C60 verified by the Raman study. The presence of solvent hinders further polymerization of C60 under higher pressures. The temperature-dependence of resistance exhibits a semiconducting characteristic at > 8–26.9 GPa, and is well described by Mott’s three-dimensional variable-range hopping model (3D-VRH), indicating an insulating-to-semiconducting transition accompanied with pressure-induced dimerization. The resistance and hopping energy are both found to decrease monotonically with pressure and reach the minimum near 24 GPa. Above the pressure, resistance and hopping energy values start to rise, suggesting a transition to another semiconducting state, which is attributed to the pressure-induced formation of OACC. The conductivity shows a large hysteresis during decompression from higher than 24 GPa, confirming a different transport behavior of the sample with retained fullerenes versus OACC. The findings of our study suggest that the transport property of fullerene is tunable by introducing solvates and further enhance our understanding of the OACC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, L.; Liu, B.; Liu, D.; Yao, M.; Hou, Y.; Yu, S.; Cui, T.; Li, D.; Zou, G.; Iwasiewicz, A. et al. Synthesis of thin, rectangular C60 nanorods using m-xylene as a shape controller. Adv. Mater. 2006, 18, 1883–1888.

    Article  CAS  Google Scholar 

  2. Wang, L.; Liu, B. B.; Li, H.; Yang, W. G.; Ding, Y.; Sinogeikin, S. V.; Meng, Y.; Liu, Z. X.; Zeng, X. C.; Mao, W. L. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks. Science 2012, 337, 825–828.

    Article  CAS  Google Scholar 

  3. Cui, W.; Yao, M. G.; Liu, S. J.; Ma, F. X.; Li, Q. J.; Liu, R.; Liu, B.; Zou, B.; Cui, T.; Liu, B. B. A new carbon phase constructed by longrange ordered carbon clusters from compressing C70 solvates. Adv. Mater. 2014, 26, 7257–7263.

    Article  CAS  Google Scholar 

  4. Yao, M. G.; Cui, W.; Du, M. R.; Xiao, J. P.; Yang, X. G.; Liu, S. J.; Liu, R.; Wang, F.; Cui, T.; Sundqvist, B. et al. Tailoring building blocks and their boundary interaction for the creation of new, potentially superhard, carbon materials. Adv. Mater. 2015, 27, 3962–3968.

    Article  CAS  Google Scholar 

  5. Du, M. R.; Yao, M. G.; Dong, J. J.; Ge, P.; Dong, Q.; Kováts, É.; Pekker, S.; Chen, S. L.; Liu, R.; Liu, B. et al. New ordered structure of amorphous carbon clusters induced by fullerene-cubane reactions. Adv. Mater. 2018, 30, 1706916.

    Article  Google Scholar 

  6. Pei, C. Y.; Wang, L. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials. Matter Radiat. Extrem. 2019, 4, 028201.

    Article  Google Scholar 

  7. Wang, L. Solvated fullerenes, a new class of carbon materials suitable for high-pressure studies: A review. J. Phys. Chem. Solids 2015, 84, 85–95.

    Article  CAS  Google Scholar 

  8. Stephens, P. W.; Cox, D.; Lauher, J. W.; Mihaly, L.; Wiley, J. B.; Allemand, P. M.; Hirsch, A.; Holczer, K.; Li, Q.; Thompson, J. D. et al. Lattice structure of the fullerene ferromagnet TDAE-C60. Nature 1992, 355, 331–332.

    Article  CAS  Google Scholar 

  9. Michaud, F.; Barrio, M.; López, D. O.; Tamarit, J. L.; Agafonov, V.; Toscani, S.; Szwarc, H.; Céolin, R. Solid-state studies on a C60 solvate grown from 1,1,2-trichloroethane. Chem. Mater. 2000, 12, 3595–3602.

    Article  CAS  Google Scholar 

  10. Barrio, M.; López, D. O.; Tamarit, J. L.; Espeau, P.; Céolin, R.; Allouchi, H. Solid-state studies of C60 solvates formed in the C60-BrCCl3 system. Chem. Mater. 2003, 15, 288–291.

    Article  CAS  Google Scholar 

  11. Mao, H. K.; Chen, X. J.; Ding, Y.; Li, B.; Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 2018, 90, 015007.

    Article  CAS  Google Scholar 

  12. Yuan, Y.; Li, Y. W.; Fang, G. Y.; Liu, G. T.; Pei, C. Y.; Li, X.; Zheng, H. Y.; Yang, K.; Wang, L. Stoichiometric evolutions of PH3 under high pressure: Implication for high-Tc superconducting hydrides}. Natl. Sci. Rev. 2019, 6, 524–531.

    Article  CAS  Google Scholar 

  13. Huang, Y. W.; He, Y.; Sheng, H.; Lu, X.; Dong, H. N.; Samanta, S.; Dong, H. L.; Li, X. F.; Kim, D. Y.; Mao, H. K. et al. Li-ion battery material under high pressure: Amorphization and enhanced conductivity of Li4Ti5O12. Natl. Sci. Rev. 2019, 6, 239–246.

    Article  CAS  Google Scholar 

  14. Sun, Y. G.; Wang, L.; Liu, Y. Z.; Ren, Y. Birnessite-type MnO2 nanosheets with layered structures under high pressure: Elimination of crystalline stacking faults and oriented laminar assembly. Small 2015, 11, 300–305.

    Article  CAS  Google Scholar 

  15. Lou, Q.; Yang, X. G.; Liu, K. K.; Ding, Z. Z.; Qin, J. X.; Li, Y. Z.; Lv, C. F.; Shang, Y.; Zhang, Y. W.; Zhang, Z. F. et al. Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots. Nano Res. 2022, 15, 2547–2553.

    Article  Google Scholar 

  16. Li, Q.; Parakh, A.; Jin, R. C.; Gu, X. W. Anomalous pressure-dependence in surface-modified silicon-derived nanoparticles. Nano Res. 2021, 14, 4748–4753.

    Article  CAS  Google Scholar 

  17. Pei, C. Y.; Feng, M. N.; Yang, Z. X.; Yao, M. G.; Yuan, Y.; Li, X.; Hu, B. W.; Shen, M.; Chen, B.; Sundqvist, B. et al. Quasi 3D polymerization in C60 bilayers in a fullerene solvate. Carbon 2017, 124, 499–505.

    Article  CAS  Google Scholar 

  18. Mizoguchi, K.; Machino, M.; Sakamoto, H.; Kawamoto, T.; Tokumoto, M.; Omerzu, A.; Mihailovic, D. Pressure effect in TDAE-C60 ferromagnet: Mechanism and polymerization. Phys. Rev. B 2001, 63, 140417.

    Article  Google Scholar 

  19. Popov, M.; Mordkovich, V.; Perfilov, S.; Kirichenko, A.; Kulnitskiy, B.; Perezhogin, I.; Blank, V. Synthesis of ultrahard fullerite with a catalytic 3D polymerization reaction of C60. Carbon 2014, 76, 250–256.

    Article  CAS  Google Scholar 

  20. Cui, W.; Yao, M. G.; Liu, D. D.; Li, Q. J.; Liu, R.; Zou, B.; Cui, T.; Liu, B. B. Reversible polymerization in doped fullerides under pressure: The case of C60(Fe(C5H5)2)2. J. Phys. Chem. B 2012, 116, 2643–2650.

    Article  CAS  Google Scholar 

  21. Iwasa, Y.; Arima, T.; Fleming, R. M.; Siegrist, T.; Zhou, O.; Haddon, R. C.; Rothberg, L. J.; Lyons, K. B.; Carter, H. L.; Hebard, A. F. et al. New phases of C60 synthesized at high pressure. Science 1994, 264, 1570–1572.

    Article  CAS  Google Scholar 

  22. Núñez-Regueiro, M.; Marques, L.; Hodeau, J. L.; Béthoux, O.; Perroux, M. Polymerized fullerite structures. Phys. Rev. Lett. 1995, 74, 278–281.

    Article  Google Scholar 

  23. Marques, L.; Mezouar, M.; Hodeau, J. L.; Núñez-Regueiro, M.; Serebryanaya, N. R.; Ivdenko, V. A.; Blank, V. D.; Dubitsky, G. A. “Debye-Scherrer ellipses” from 3D fullerene polymers: An anisotropic pressure memory signature. Science 1999, 283, 1720–1723.

    Article  CAS  Google Scholar 

  24. Yamanaka, S.; Kubo, A.; Inumaru, K.; Komaguchi, K.; Kini, N. S.; Inoue, T.; Irifune, T. Electron conductive three-dimensional polymer of cuboidal C60. Phys. Rev. Lett. 2006, 96, 076602.

    Article  Google Scholar 

  25. Blank, V. D.; Buga, S. G.; Dubitsky, G. A.; Serebryanaya, N. R.; Popov, M. Y.; Sundqvist, B. High-pressure polymerized phases of C60. Carbon 1998, 36, 319–343.

    Article  CAS  Google Scholar 

  26. Sundqvist, B. Polymeric fullerene phases formed under pressure. In Fullerene-Based Materials; Prassides, K., Ed.; Springer: Berlin, Heidelberg, 2004; pp 85–126.

    Chapter  Google Scholar 

  27. Álvarez-Murga, M.; Hodeau, J. L. Structural phase transitions of C60 under high-pressure and high-temperature. Carbon 2015, 82, 381–407.

    Article  Google Scholar 

  28. Wu, J. H.; Wang, S. Y.; Lei, Z. W.; Guan, R. N.; Chen, M. Q.; Du, P. W.; Lu, Y. L.; Cao, R. G.; Yang, S. F. Pomegranate-like C60@cobalt/nitrogen-codoped porous carbon for high-performance oxygen reduction reaction and lithium-sulfur battery. Nano Res. 2021, 14, 2596–2605.

    Article  CAS  Google Scholar 

  29. Zhang, X. Y.; Zhou, W.; Liu, Y.; Jin, L. Y.; Huo, J. W.; Yang, Y.; Li, S. M.; Ma, H. J.; Li, J.; Zhen, M. M. et al. Nanosize aminated fullerene for autophagic flux activation and G0/G1 phase arrest in cancer cells via post-transcriptional regulation. Nano Res., in press, https://doi.org/10.1007/s12274-021-3866-1.

  30. Regueiro, M. N.; Monceau, P.; Rassat, A.; Bernier, P.; Zahab, A. Absence of a metallic phase at high pressures in C60. Nature 1991, 354, 289–291.

    Article  Google Scholar 

  31. Saito, Y.; Shinohara, H.; Kato, M.; Nagashima, H.; Ohkohchi, M.; Ando, Y. Electric conductivity and band gap of solid C60 under high pressure. Chem. Phys. Lett. 1992, 189, 236–240.

    Article  CAS  Google Scholar 

  32. Qiu, W.; Chowdhury, S.; Hammer, R.; Velisavljevic, N.; Baker, P.; Vohra, Y. K. Physical and mechanical properties of C60 under high pressures and high temperatures. High Press. Res. 2006, 66, 175–183.

    Article  Google Scholar 

  33. Fleming, R. M.; Ramirez, A. P.; Rosseinsky, M. J.; Murphy, D. W.; Haddon, R. C.; Zahurak, S. M.; Makhija, A. V. Relation of structure and superconducting transition temperatures in A3C60. Nature 1991, 352, 787–788.

    Article  CAS  Google Scholar 

  34. Holczer, K.; Klein, O.; Huang, S. M.; Kaner, R. B.; Fu, K. J.; Whetten, R. L.; Diederich, F. Alkali-fulleride superconductors: Synthesis, composition, and diamagnetic shielding. Science 1991, 252, 1154–1157.

    Article  CAS  Google Scholar 

  35. Rosseinsky, M. J.; Ramirez, A. P.; Glarum, S. H.; Murphy, D. W.; Haddon, R. C.; Hebard, A. F.; Palstra, T. T. M.; Kortan, A. R.; Zahurak, S. M.; Makhija, A. V. Superconductivity at 28 K in RbxC60. Phys. Rev. Lett. 1991, 66, 2830–2832.

    Article  CAS  Google Scholar 

  36. Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. Superconductivity at 33 K in CsxRbyC60. Nature 1991, 352, 222–223.

    Article  CAS  Google Scholar 

  37. Wang, L.; Liu, B. B.; Yu, S. D.; Yao, M. G.; Liu, D. D.; Hou, Y. Y.; Cui, T.; Zou, G. T.; Sundqvist, B.; You, H. et al. Highly enhanced luminescence from single-crystalline C60·1 m-xylene nanorods. Chem. Mater. 2006, 12, 4190–4194.

    Article  Google Scholar 

  38. Yao, M. G.; Cui, W.; Xiao, J. P.; Chen, S. L.; Cui, J. X.; Liu, R.; Cui, T.; Zou, B.; Liu, B. B.; Sundqvist, B. Pressure-induced transformation and superhard phase in fullerenes: The effect of solvent intercalation. Appl. Phys. Lett. 2013, 103, 071913.

    Article  Google Scholar 

  39. Rao, A. M.; Zhou, P.; Wang, K. A.; Hager, G. T.; Holden, J. M.; Wang, Y.; Lee, W. T.; Bi, X. X.; Eklund, P. C.; Cornett, D. S. et al. Photoinduced polymerization of solid C60 films. Science 1993, 259, 955–957.

    Article  CAS  Google Scholar 

  40. Abrantes, J. C. C.; Labrincha, J. A.; Frade, J. R. An alternative representation of impedance spectra of ceramics. Mater. Res. Bull. 2000, 35, 727–740.

    Article  CAS  Google Scholar 

  41. Moshary, F.; Chen, N. H.; Silvera, I. F.; Brown, C. A.; Dorn, H. C.; de Vries, M. S.; Bethune, D. S. Gap reduction and the collapse of solid C60 to a new phase of carbon under pressure. Phys. Rev. Lett. 1992, 69, 466–469.

    Article  CAS  Google Scholar 

  42. Snoke, D. W.; Raptis, Y. S.; Syassen, K. Vibrational modes, optical excitations, and phase transition of solid C60 at high pressures. Phys. Rev. B 1992, 45, 14419–14422.

    Article  CAS  Google Scholar 

  43. Liu, C. L.; Han, Y. H.; Wang, Y.; Peng, G.; Wu, B. J.; Gao, C. X. Preparation and characterization of boron doped diamond electrodes on diamond anvil for in situ electrical measurements under high pressure. Diam. Relat. Mater. 2011, 20, 250–253.

    Article  CAS  Google Scholar 

  44. Mott, N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials, 2nd ed.; Clarendon Press: Oxford, 2012.

    Google Scholar 

  45. Bethune, D. S.; Meijer, G.; Tang, W. C.; Rosen, H. J.; Golden, W. G.; Seki, H.; Brown, C. A.; de Vries, M. S. Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters. Chem. Phys. Lett. 1991, 179, 181–186.

    Article  CAS  Google Scholar 

  46. Lebedkin, S.; Gromov, A.; Giesa, S.; Gleiter, R.; Renker, B.; Rietschel, H.; Krätschmer, W. Raman scattering study of C120, a C60 dimer. Chem. Phys. Lett. 1998, 285, 210–215.

    Article  CAS  Google Scholar 

  47. Mases, M.; You, S. J.; Weir, S. T.; Evans, W. J.; Volkova, Y.; Tebenkov, A.; Babushkin, A. N.; Vohra, Y. K.; Samudrala, G.; Soldatov, A. V. In situ electrical conductivity and Raman study of C60 tetragonal polymer at high pressures up to 30 GPa. Phys. Stat. Sol. B 2010, 247, 3068–3071.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 52090020 and 11874076), and National Research Foundation of Korea (Nos. 2016K1A4A3914691 and 2018R1D1A1B07049811).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Soldatov, Jaeyong Kim or Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Gao, G., Zhang, J. et al. Tunable electrical properties of C60·m-xylene and the formation of semiconducting ordered amorphous carbon clusters under pressure. Nano Res. 15, 3788–3793 (2022). https://doi.org/10.1007/s12274-022-4092-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4092-1

Keywords

Navigation