Skip to main content
Log in

Wet-milling synthesis of immobilized Pt/Ir nanoclusters as promising heterogeneous catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Being a typical state of the art heterogeneous catalyst, supported noble metal catalyst often demonstrates enhanced catalytic properties. However, a facile synthetic method for realizing large-scale and low-cost supported noble metal catalyst is strictly indispensable. To this end, by making use of the strong metal-support interaction (SMSI) and mechanochemical reaction, we introduce an efficient synthetic route to obtain ultrafine Pt and Ir nanoclusters immobilized on diverse substrates by wet chemical milling. We further demonstrate the scaling-up effect of our approach by large-scale ball-milling production of Pt nanoclusters immobilized on TiO2 substrate. The synthesized Pt/Ir@Co3O4 catalysts exhibit superior oxygen evolution reaction (OER) performance with only 230 and 290 mV overpotential to achieve current density of 10 and 100 mA·cm−2, beating the catalytic performance of Co3O4 supported Pt or Ir clusters and commercial Ir/C. It is envisioned that the present work strategically directs facile ways for fabricating supported noble metal heterogeneous catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  2. Yasukawa, T.; Masuda, R.; Kobayashi, S. Development of heterogeneous catalyst systems for the continuous synthesis of chiral amines via asymmetric hydrogenation. Nat. Catal. 2019, 2, 1088–1092.

    Article  CAS  Google Scholar 

  3. Wang, J.; Gan, L. Y., Zhang, W. Y.; Peng, Y. C.; Yu, H.; Yan, Q. Y.; Xia, X. H.; Wang, X. In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Sci. Adv. 2018, 4, eaap7970.

    Article  Google Scholar 

  4. Meirer, F.; Weckhuysen, B. M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat. Rev. Mater. 2018, 3, 324–340.

    Article  Google Scholar 

  5. Ye, R.; Zhao, J.; Wickemeyer, B. B.; Toste, F. D., Somorjai, G. A. Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat. Catal. 2018, 1, 318–325.

    Article  Google Scholar 

  6. Gan, T.; Chu, X. F.; Qi, H.; Zhang, W. X.; Zou, Y. C.; Yan, W. F.; Liu, G. Pt/Al2O3 with ultralow Pt-loading catalyze toluene oxidation: Promotional synergistic effect of Pt nanoparticles and Al2O3 support. Appl. Catal. B: Environ. 2019, 257, 117943.

    Article  CAS  Google Scholar 

  7. Huang, K.; Zhang, L.; Xu, T.; Wei, H. H.; Zhang, R. Y.; Zhang, X. Y.; Ge, B. H.; Lei, M.; Ma, J. Y.; Liu, L. M. et al. −60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance. Nat. Commun. 2019, 10, 606.

    Article  CAS  Google Scholar 

  8. Wang, Z.; Xing, R. B.; Yu, X. H.; Han, Y. C. Adhesive lithography for fabricating organic electronic and optoelectronics devices. Nanoscale 2011, 3, 2663–2678.

    Article  CAS  Google Scholar 

  9. Hutter, E.; Fendler, J. H. Exploitation of localized surface Plasmon resonance. Adv. Mater. 2004, 16, 1685–1706.

    Article  CAS  Google Scholar 

  10. Loynachan, C. N.; Soleimany, A. P.; Dudani J. S.; Lin, Y. Y.; Najer, A.; Bekdemir, A.; Chen, Q.; Bhatia, S. N.; Stevens, M. M. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 2019, 14, 883–890.

    Article  CAS  Google Scholar 

  11. Kang, X. C.; Liu, H. Z.; Hou, M. Q.; Sun, X. F.; Han, H. L.; Jiang, T.; Zhang, Z. F.; Han, B. X. Synthesis of supported ultrafine non-noble subnanometer-scale metal particles derived from metal-organic frameworks as highly efficient heterogeneous catalysts. Angew. Chem., Int. Ed. 2016, 55, 1080–1084.

    Article  CAS  Google Scholar 

  12. Liu, B.; Yao, H. Q.; Song, W. Q.; Jin, L.; Mosa, I. M.; Rusling, J. F.; Suib, S. L.; He, J. Ligand-free noble metal nanocluster catalysts on carbon supports via psoftq nitriding. J. Am. Chem. Soc. 2016, 138, 4718–4721.

    Article  CAS  Google Scholar 

  13. Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.

    Article  Google Scholar 

  14. Takahashi, M.; Koizumi, H.; Chun, W. J.; Kori, M.; Imaoka, T.; Yamamoto, K. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons. Sci. Adv. 2017, 3, e1700101.

    Article  Google Scholar 

  15. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.

    Article  CAS  Google Scholar 

  16. Tang, H. L.; Su, Y.; Zhang, B. S.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y. G.; Huang, J. H.; Haruta, M. et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231.

    Article  Google Scholar 

  17. Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-watersplitting catalysis. Adv. Mater. 2017, 29, 1703798.

    Article  Google Scholar 

  18. Calle-Vallejo, F.; Tymoczko, J.; Colic, V.; Vu, Q. H.; Pohl, M. D.; Morgenstern, K.; Loffreda, D.; Sautet, P.; Schuhmann, W.; Bandarenka, A. S. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 2015, 350, 185–189.

    Article  CAS  Google Scholar 

  19. van Deelen, T. W.; Mejía, C. H.; de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

    Article  CAS  Google Scholar 

  20. Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

    Article  Google Scholar 

  21. Ahmadi, M.; Mistry, H.; Cuenya, B. R. Tailoring the catalytic properties of metal nanoparticles via support interactions. J. Phys. Chem. Lett. 2016, 7, 3519–3533.

    Article  CAS  Google Scholar 

  22. Fujiwara, K.; Okuyama, K.; Pratsinis, S. E. Metal-support interactions in catalysts for environmental remediation. Environ. Sci.: Nano 2017, 4, 2076–2092.

    CAS  Google Scholar 

  23. Huang, T. F.; Sheng, G.; Manchanda, P.; Emwas, A. H.; Lai, Z. P.; Nunes, S. P.; Peinemann, K. V. Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for highperformance low-temperature catalysis. Sci. Adv. 2019, 5, eaax6976.

    Article  CAS  Google Scholar 

  24. Wang, Q.; Ming, M.; Niu, S.; Zhang, Y.; Fan, G. Y.; Hu, J. S. Scalable solid-state synthesis of highly dispersed uncapped metal (Rh, Ru, Ir) nanoparticles for efficient hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801698.

    Article  Google Scholar 

  25. Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

    Article  CAS  Google Scholar 

  26. Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.

    Article  Google Scholar 

  27. Sun, J. K.; Zhan, W. W.; Akita, T.; Xu, Q. Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: Soluble porous organic cage as a stabilizer and homogenizer. J. Am. Chem. Soc. 2015, 137, 7063–7066.

    Article  CAS  Google Scholar 

  28. Peng, P.; Shi, L.; Huo, F.; Mi, C. X.; Wu, X. H.; Zhang, S. J.; Xiang, Z. H. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 2019, 5, eaaw2322.

    Article  CAS  Google Scholar 

  29. bin Saiman, M. I.; Brett, G. L.; Tiruvalam, R.; Forde, M. M.; Sharples, K.; Thetford, A.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Murphy, D. M. et al. Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 5981–5985.

    Article  CAS  Google Scholar 

  30. Zhou, P.; Jiang, L.; Wang, F.; Deng, K. J.; Lv, K. L.; Zhang, Z. H. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Sci. Adv. 2017, 3, e1601945.

    Article  Google Scholar 

  31. Wu, Z. Y.; Xu, S. L.; Yan, Q. Q.; Chen, Z. Q.; Ding, Y. W.; Li, C.; Liang, H. W.; Yu, S. H. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 2017, 4, eaat0788.

    Article  Google Scholar 

  32. Friščić, T. Supramolecular concepts and new techniques in mechanochemistry: Cocrystals, cages, rotaxanes, open metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 3493–3510.

    Article  Google Scholar 

  33. Amrute, A. P.; Łodziana, Z.; Schreyer, H.; Weidenthaler, C.; Schüth, F. High-surface-area corundum by mechanochemically induced phase transformation of boehmite. Science 2019, 366, 485–489.

    Article  CAS  Google Scholar 

  34. Pham, H. H.; Cheng, M. J.; Frei, H.; Wang, L. W. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4(001) surface. ACS Catal. 2016, 6, 5610–5617.

    Article  CAS  Google Scholar 

  35. Zhuang, Z. B.; Sheng, W. C.; Yan, Y. S. Synthesis of Monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv. Mater. 2014, 26, 3950–3955.

    Article  CAS  Google Scholar 

  36. Li, H. C.; Zhang, Y. J.; Hu, X.; Liu, W. J.; Chen, J. J.; Yu, H. Q. Metal-organic framework templated Pd@PdO-Co3O4 nanocubes as an efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2018, 8, 1702734.

    Article  Google Scholar 

  37. Vogt, C. G.; Grtz, S.; Lukin, S.; Halasz, I.; Etter, M.; Evans, J. D.; Borchardt, L. Direct mechanocatalysis: Palladium as milling media and catalyst in the mechanochemical Suzuki polymerization. Angew. Chem., Int. Ed. 2019, 58, 18942–18947.

    Article  CAS  Google Scholar 

  38. Yang, C. Z.; Rousse, G.; Svane, K. L.; Pearce, P. E.; Abakumov, A. M.; Deschamps, M.; Cibin, G.; Chadwick, A. V.; Corte, D. A. D.; Hansen, H. A. et al. Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst. Nat. Commun. 2020, 11, 1378.

    Article  CAS  Google Scholar 

  39. Kubota, K.; Pang, Y.; Miura, A.; Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 2019, 366, 1500–1504.

    Article  CAS  Google Scholar 

  40. Kamolphop, U.; Taylor, S. F. R.; Breen, J. P.; Burch, R.; Delgado, J. J.; Chansai, S.; Hardacre, C.; Hengrasmee, S.; James, S. L. Low-temperature selective catalytic reduction (SCR) of NOx with n-octane using solvent-free mechanochemically prepared Ag/Al2O3 catalysts. ACS Catal. 2011, 1, 1257–1262.

    Article  CAS  Google Scholar 

  41. Sun, D.; Ye, D. L.; Liu, P.; Tang, Y. G.; Guo, J.; Wang, L. Z.; Wang, H. Y. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702383.

    Article  Google Scholar 

  42. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.

    Article  CAS  Google Scholar 

  43. Yue, W. B.; Randorn, C.; Attidekou, P. S.; Su, Z. X.; Irvine, J. T. S.; Zhou, W. Z. Syntheses, Li insertion, and photoactivity of mesoporous crystalline TiO2. Adv. Funct. Mater. 2009, 19, 2826–2833.

    Article  CAS  Google Scholar 

  44. Narendra Kumar, A. V.; Li, Y. H.; Yin, S. L.; Li, C. J.; Xue, H. R.; Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. Mesoporous Co3O4 nanobundle electrocatalysts. Chem. -Asian J. 2018, 13, 2093–2100.

    Article  CAS  Google Scholar 

  45. Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

    Article  Google Scholar 

  46. Jones, J.; Xiong H. F.; DeLaRiva, A. T.; Peterson E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  Google Scholar 

  47. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  CAS  Google Scholar 

  48. Dong, Y.; Lin, X. J.; Wang, D. K.; Yuan, R. L.; Zhang, S.; Chen, X. H.; Bulusheva, L. G.; Okotrub, A. V.; Song, H. H. Modulating the defects of graphene blocks by ball-milling for ultrahigh gravimetric and volumetric performance and fast sodium storage. Energy Storage Mater. 2020, 30, 287–295.

    Article  Google Scholar 

  49. Shi, D.; Yang, M. Z.; Chang, B.; Ai, Z. Z.; Zhang, K.; Shao, Y. L.; Wang, S. Z.; Wu, Y. Z.; Hao, X. P. Ultrasonic-ball milling: A novel strategy to prepare large-size ultrathin 2D materials. Small 2020, 16, 1906734.

    Article  CAS  Google Scholar 

  50. Robertson, J. C.; Coote, M. L.; Bissember, A. C. Synthetic applications of light, electricity, mechanical force and flow. Nat. Rev. Chem. 2019, 3, 290–304.

    Article  Google Scholar 

  51. Zhu, Y. P.; Ma, T. Y.; Jaroniec, M.; Qiao, S. Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem., Int. Ed. 2017, 56, 1324–1328.

    Article  CAS  Google Scholar 

  52. Xu, H.; Wei, J. J.; Zhang, M.; Liu, C. F.; Shiraishi, Y.; Wang, C. Q.; Du, Y. K. Heterogeneous Co(OH)2 nanoplates//Co3O4 nanocubes enriched with oxygen vacancies enable efficient oxygen evolution reaction electrocatalysis. Nanoscale 2018, 10, 18468–18472.

    Article  CAS  Google Scholar 

  53. Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.

    Article  Google Scholar 

  54. Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

    Article  CAS  Google Scholar 

  55. Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.

    Article  Google Scholar 

  56. Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062.

    Article  Google Scholar 

  57. Cheng, X.; Li, Y.; Zheng, L. R.; Yan, Y.; Zhang, Y. F.; Chen, G.; Sun, S. R.; Zhang, J. J. Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 2450–2458.

    Article  CAS  Google Scholar 

  58. Sun, Y.; Zhou, Y. J.; Zhu, C.; Hu, L. L.; Han, M. M.; Wang, A. Q.; Huang, H.; Liu, Y.; Kang, Z. H. A Pt-Co3O4-CD electrocatalyst with enhanced electrocatalytic performance and resistance to CO poisoning achieved by carbon dots and Co3O4 for direct methanol fuel cells. Nanoscale 2017, 9, 5467–5474.

    Article  CAS  Google Scholar 

  59. Wang, W. Q.; Xi, S. M.; Shao, Y. L.; Gao, X.; Lin, J.; Meng, C.; Wang, W. J.; Guo, X. S.; Li, G. C. Sub-nanometer-sized iridium species decorated on mesoporous Co3O4 for electrocatalytic oxygen evolution. ChemElectroChem 2019, 6, 1846–1852.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundations of China (Nos. 51902027, 61874014, 61874013, 51788104, 61974011 and 61976025), the Basic Science Center Program of the National Natural Science Foundation of China (No. 51788104), National Basic Research of China (Nos. 2016YFE0102200 and 2018YFB0104404), Beijing Natural Science Foundation (No. JQ19005), Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Huang, Ming Lei or Hui Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, P., Huang, K., Fan, X. et al. Wet-milling synthesis of immobilized Pt/Ir nanoclusters as promising heterogeneous catalysts. Nano Res. 15, 3065–3072 (2022). https://doi.org/10.1007/s12274-021-3963-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3963-1

Keywords

Navigation