Skip to main content
Log in

One-pot hydrothermal synthesis of hierarchical porous manganese silicate microspheres as excellent Fenton-like catalysts for organic dyes degradation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Towards bottlenecks demonstrated by typical Fenton-like catalysts in advanced oxidation processes (AOPs) for wastewater treatment, novel hierarchical porous \({\rm{M}}{{\rm{n}}^{2 + }}{\rm{Mn}}_6^{3 + }{\rm{Si}}{{\rm{O}}_{12}}\) (Mn7SiO12, MSO-12) microspheres (specific surface area: 434.90 m2·g−1, pore volume: 0.78 cm3·g−1) were rationally designed and achieved via a simple one-pot hydrothermal method (150 °C and 12.0 h) without any pre-prepared templates or organic solvents, by using abundant MnCl2·4H2O and Na2SiO3·9H2O as the basic raw materials. The MSO-12 microspheres are confirmed as high-efficiency Fenton-like catalysts for degradation of organic dyes (methylene blue (MeB), Rhodamine B (RhB), and methyl blue (MB)) in the presence of H2O2, with impressively high specific consumption amount of MeB (R = 12.35 mg·g−1min−1) and extremely low leaching of Mn (Mnloss% = 0.27%). Simultaneously, the synergetic effect of adsorption and degradation on the superior removal of MeB is uncovered. The excellent recycling performances, especially the satisfactory removal of MeB from the actual water bodies (e.g., tap water and river water), as well as potential applications for degradation of RhB and MB enable the MSO-12 microspheres as a novel promising competitive candidate Fenton-like catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, Y. P.; Zhu, R. L.; Xi, Y. F.; Zhu, J. X.; Zhu, G. Q.; He, H. P. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B: -Environ. 2019, 255, 117739.

    Article  CAS  Google Scholar 

  2. Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

    Article  CAS  Google Scholar 

  3. Feng, Y. W.; Han, K.; Jiang, T.; Bian, Z. F.; Liang, X.; Cao, X.; Li, H. X.; Wang, Z. L. Self-powered electrochemical system by combining Fenton reaction and active chlorine generation for organic contaminant treatment. Nano Res. 2019, 12, 2729–2735.

    Article  CAS  Google Scholar 

  4. Mushtaq, F.; Chen, X. Z.; Torlakcik, H.; Nelson, B. J.; Pané, S. Enhanced catalytic degradation of organic pollutants by multi-stimuli activated multiferroic nanoarchitectures. Nano Res. 2020, 13, 2183–2191.

    Article  CAS  Google Scholar 

  5. Sekar, S.; Surianarayanan, M.; Ranganathan, V.; MacFarlane, D. R.; Mandal, A. B. Choline-based ionic liquids-enhanced biodegradation of azo dyes. Environ. Sci. Technol. 2012, 46, 4902–4908.

    Article  CAS  Google Scholar 

  6. Verma, A. K.; Dash, R. R.; Bhunia, P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage. 2012, 93, 154–168.

    Article  CAS  Google Scholar 

  7. Hu, E. L.; Wu, X. B.; Shang, S. M.; Tao, X. M.; Jiang, S. X.; Gan, L. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J. Clean. Prod. 2016, 112, 4710–4718.

    Article  CAS  Google Scholar 

  8. Sun, C.; Yang, S. T.; Gao, Z. J.; Yang, S. N.; Yilihamu, A.; Ma, Q.; Zhao, R. S.; Xue, F. M. Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue. Mater. Chem. Phys. 2019, 223, 751–757.

    Article  CAS  Google Scholar 

  9. Xu, L.; Sun, P. P.; Jiang, X. Z.; Chen, J. X.; Wang, J. Y.; Zhang, H.; Zhu, W. C. Hierarchical quasi waxberry-like Ba5Si8O21 microspheres: Facile green rotating hydrothermal synthesis, formation mechanism and high adsorption performance for Congo red. Chem. Eng. J. 2020, 384, 123387.

    Article  CAS  Google Scholar 

  10. Bokare, A. D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135.

    Article  CAS  Google Scholar 

  11. Hao, S. M.; Qu, J.; Zhu, Z. S.; Zhang, X. Y.; Wang, Q. Q.; Yu, Z. Z. Hollow manganese silicate nanotubes with tunable secondary nanostructures as excellent Fenton-type catalysts for dye decomposition at ambient temperature. Adv. Funct. Mater. 2016, 26, 7334–7342.

    Article  CAS  Google Scholar 

  12. Tušar, N. N.; Maučec, D.; Rangus, M.; Arčon, I.; Mazaj, M.; Cotman, M.; Pintar, A.; Kaučič, V. Manganese functionalized silicate nanoparticles as a Fenton-type catalyst for water purification by advanced oxidation processes (AOP). Adv. Funct. Mater. 2012, 22, 820–826.

    Article  Google Scholar 

  13. Huang, R. T.; Liu, Y. Y.; Chen, Z. W.; Pan, D. Y.; Li, Z.; Wu, M. H.; Shek, C. H.; Wu, C. M. L.; Lai, J. K. L. Fe-species-loaded mesoporous MnO2 superstructural requirements for enhanced catalysis. ACS Appl. Mater. Interfaces 2015, 7, 3949–3959.

    Article  CAS  Google Scholar 

  14. Li, Y. Q.; Qu, J. Y.; Gao, F.; Lv, S. Y.; Shi, L.; He, C. X.; Sun, J. C. In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue. Appl. Catal. B:Environ. 2015, 162, 268–274.

    Article  CAS  Google Scholar 

  15. Qu, J. Y.; Shi, L.; He, C. X.; Gao, F.; Li, B. B.; Zhou, Q.; Hu, H.; Shao, G. H.; Wang, X. Z.; Qiu, J. S. Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue. Carbon 2014, 66, 485–492.

    Article  CAS  Google Scholar 

  16. Ding, B. B.; Zheng, P.; Ma, P. A.; Lin, J. Manganese oxide nanomaterials: Synthesis, properties, and theranostic applications. Adv. Mater. 2020, 32, 1905823.

    Article  CAS  Google Scholar 

  17. Zhang, J. H.; Li, Y. B.; Wang, L.; Zhang, C. B.; He, H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal. Sci. Technol. 2015, 5, 2305–2313.

    Article  CAS  Google Scholar 

  18. Zhu, S. S.; Li, X. J.; Kang, J.; Duan, X. G.; Wang, S. B. Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ. Sci. Technol. 2019, 53, 307–315.

    Article  CAS  Google Scholar 

  19. Saroyan, H.; Ntagiou, D.; Rekos, K.; Deliyanni, E. Reactive black 5 degradation on manganese oxides supported on sodium hydroxide modified graphene oxide. Appl. Sci. 2019, 9, 2167.

    Article  CAS  Google Scholar 

  20. Wang, C. C.; Fu, J. L.; Zhang, Y.; Zhao, H.; Wei, X.; Zhang, R. J. Microhydrangeas with a high ratio of low valence MnOx are capable of extremely fast degradation of organics. Chem. Commun. 2018, 54, 7330–7333.

    Article  CAS  Google Scholar 

  21. Xu, Y. L.; Ren, B.; Wang, R.; Zhang, L. H.; Jiao, T. F.; Liu, Z. F. Facile preparation of rod-like MnO nanomixtures via hydrothermal approach and highly efficient removal of methylene blue for wastewater treatment. Nanomaterials 2019, 9, 10.

    Article  Google Scholar 

  22. Bai, Z. C.; Sun, B.; Fan, N.; Ju, Z. C.; Li, M. H.; Xu, L. Q.; Qian, Y. T. Branched mesoporous Mn3O4 nanorods: Facile synthesis and catalysis in the degradation of methylene blue. Chem.—Eur. J. 2012, 18, 5319–5324.

    Article  CAS  Google Scholar 

  23. Rezaei, E.; Soltan, J. EXAFS and kinetic study of MnOx/γ-alumina in gas phase catalytic oxidation of toluene by ozone. Appl. Catal. B: Environ. 2014, 148–149, 70–79.

    Article  Google Scholar 

  24. Wang, Q. S.; Zhang, Y. F.; Jiang, H. M.; Li, X. J.; Cheng, Y.; Meng, C. G. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: A potential electrode material for flexible all solidstate asymmetric supercapacitor. Chem. Eng. J. 2019, 362, 818–829.

    Article  CAS  Google Scholar 

  25. Zhu, W. C.; Sun, P. P.; Ran, W. G.; Zheng, Y. Y.; Wang, L. H.; Zhang, L. Y.; Jia, X. H.; Chen, J. X.; Wang, J. Y.; Zhang, H. et al. Rational design and facile hydrothermal-thermal conversion synthesis of hierarchical porous urchin-like Cu2−xSi2O5(OH)3·xH2O and CuO/SiO2 hollow microspheres for high efficiency catalytic reduction of nitroarenes and adsorption of organic dye. Chem. Eng. J. 2021, 411, 128442.

    Article  CAS  Google Scholar 

  26. Xu, L.; Sun, P. P.; Chen, X. P.; Zhai, P. Y.; Zhu, W. C. Facile hydrothermal-thermal conversion synthesis of CaSiO3 nanowires as promising structure and function integrated photoluminescent host candidate. Chin. Chem. Lett. 2019, 30, 171–174.

    Article  CAS  Google Scholar 

  27. Zhang, T.; Yue, Q.; Pan, P. P.; Ren, Y.; Yang, X. Y.; Cheng, X. W.; Alharthi, F. A.; Alghamdi, A. A.; Deng, Y. H. One-dimensional nanochains consisting of magnetic core and mesoporous aluminosilicate for use as efficient nanocatalysts. Nano Res. 2021, 14, 4197–1203.

    Article  CAS  Google Scholar 

  28. Wang, Y. Q.; Wang, G. Z.; Wang, H. Q.; Cai, W. P.; Zhang, L. D. One-pot synthesis of nanotube-based hierarchical copper silicate hollow spheres. Chem. Commun. 2008, 48, 6555–6557.

    Article  Google Scholar 

  29. Yang, Y.; Liang, Q. Q.; Li, J. H.; Zhuang, Y.; He, Y. H.; Bai, B.; Wang, X. Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Res. 2011, 4, 882–890.

    Article  CAS  Google Scholar 

  30. Liu, C. H.; Wang, D. D.; Zhang, S. Y.; Cheng, Y. R.; Yang, F.; Xing, Y.; Xu, T. L.; Dong, H. F.; Zhang, X. J. Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano 2019, 13, 4267–4277.

    Article  CAS  Google Scholar 

  31. Das, A. K.; Kuchi, R.; Van, P. C.; Sohn, Y.; Jeong, J. R. Development of an Fe3O4@Cu silicate based sensing platform for the electrochemical sensing of dopamine. RSC Adv. 2018, 8, 31037–31047.

    Article  CAS  Google Scholar 

  32. Gao, Q.; Li, H. T.; Ling, Y.; Han, B.; Xia, K. S.; Zhou, C. G. Synthesis of MnSiO3 decorated hollow mesoporous silica spheres and its promising application in environmental remediation. Micropor. Mesopor. Mater. 2017, 241, 409–417.

    Article  CAS  Google Scholar 

  33. Yec, C. C.; Zeng, H. C. Nanobubbles within a microbubble: Synthesis and self-assembly of hollow manganese silicate and its metal-doped derivatives. ACS Nano 2014, 8, 6407–6416.

    Article  CAS  Google Scholar 

  34. Liu, J. Y.; Chen, T. T.; Jian, P. M.; Wang, L. X. Hierarchical hollow nickel silicate microflowers for selective oxidation of styrene. J. Colloid Interface Sci. 2019, 553, 606–612.

    Article  CAS  Google Scholar 

  35. Pang, J. B.; Fu, F. L.; Li, W. B.; Zhu, L. J.; Tang, B. Fe-Mn binary oxide decorated diatomite for rapid decolorization of methylene blue with H2O2. Appl. Surf. Sci. 2019, 478, 54–61.

    Article  CAS  Google Scholar 

  36. Wang, Q. S.; Zhang, Y. F.; Jiang, H. M.; Meng, C. G. In situ grown manganese silicate from biomass-derived heteroatom-doped porous carbon for supercapacitors with high performance. J. Colloid Interface Sci. 2019, 534, 142–155.

    Article  CAS  Google Scholar 

  37. Bai, S. S.; Tian, G. Y.; Gong, L. L.; Tang, Q. G.; Meng, J. P.; Duan, X. H.; Liang, J. S. Mesoporous manganese silicate composite adsorbents synthesized from high-silicon iron ore tailing. Chem. Eng. Res. Des. 2020, 159, 543–554.

    Article  CAS  Google Scholar 

  38. Zhang, J. Y.; Jin, M. S.; Park, Y. I.; Jin, L. Y.; Quan, B. Facile synthesis of ultra-small hollow manganese silicate nanoparticles as pH/GSH-responsive T1-MRI contrast agents. Ceram. Int. 2020, 46, 18632–18638.

    Article  CAS  Google Scholar 

  39. Jiang, D. B.; Yuan, Y. S.; Zhao, D. Q.; Tao, K. M.; Xu, X.; Zhang, Y. X. Facile synthesis of three-dimensional diatomite/manganese silicate nanosheet composites for enhanced Fenton-like catalytic degradation of malachite green dye. J. Nanopart. Res. 2018, 20, 123.

    Article  Google Scholar 

  40. Wang, H.; Gao, Q.; Li, H. T.; Wang, H. Q. One-step template-free synthesis of Mn(II)-doped TiO2 hierarchical microspheres with unique radiating fibrous structure for efficient Fenton degradation. Mater. Res. Bull. 2019, 118, 110508.

    Article  CAS  Google Scholar 

  41. Kong, X.; Chen, A. T.; Chen, L.; Feng, L.; Wang, W. W.; Li, J.; Du, Q. Y.; Sun, W. Z.; Zhang, J. T. nanosheets. Sep. Purif. Technol. 2021, 272, 118850.

    Article  CAS  Google Scholar 

  42. Islam, M. A.; Ali, I.; Karim, S. M. A.; Hossain Firoz, M. S.; Chowdhury, A. N.; Morton, D. W.; Angove, M. J. Removal of dye from polluted water using novel nano manganese oxide-based materials. J. Water Process Eng. 2019, 32, 100911.

    Article  Google Scholar 

  43. Su, S. S.; Liu, Y. Y.; Liu, X. M.; Jin, W.; Zhao, Y. P. Transformation pathway and degradation mechanism of methylene blue through β-FeOOH@GO catalyzed photo-Fenton-like system. Chemosphere 2019, 218, 83–92.

    Article  CAS  Google Scholar 

  44. Zhao, Y. L.; Kang, S. C.; Qin, L.; Wang, W.; Zhang, T. T.; Song, S. X.; Komarneni, S. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chem. Eng. J. 2020, 379, 122322.

    Article  CAS  Google Scholar 

  45. Xiang, H. L.; Ren, G. K.; Zhong, Y. J.; Xu, D. H.; Zhang, Z. Y.; Wang, X. L.; Yang, X. S. Fe3O4@C nanoparticles synthesized by in situ solid-phase method for removal of methylene blue. Nanomaterials 2021, 11, 330.

    Article  CAS  Google Scholar 

  46. Wang, H.; Gao, Q.; Li, H. T.; Gao, M.; Han, B.; Xia, K. S.; Zhou, C. G. Simple and controllable synthesis of high-quality MnTiO3 nanodiscs and their application as a highly efficient catalyst for H2O2-mediated oxidative degradation. ACS Appl. Nano Mater. 2018, 1, 2727–2738.

    Article  CAS  Google Scholar 

  47. Ling, Y.; Gao, Q.; Ma, C. F.; Gong, Y. S.; Bo, H.; Xia, K. S.; Zhou, C. G. A waxberry-like SiO2@MnSiO3 core-shell nanocomposite synthesized via a simple solvothermal self-template method and its potential in catalytic degradation and heavy metal ion removal. RSC Adv. 2016, 6, 23360–23369.

    Article  CAS  Google Scholar 

  48. Luo, X. L.; Hu, H. T.; Pan, Z.; Pei, F.; Qian, H. M.; Miao, K. K.; Guo, S. F.; Wang, W.; Feng, G. D. Efficient and stable catalysis of hollow Cu9S5 nanospheres in the Fenton-like degradation of organic dyes. J Hazard. Mater. 2020, 396, 122735.

    Article  CAS  Google Scholar 

  49. Wang, R. J.; Liu, X. Y.; Wu, R. H.; Yu, B. W.; Li, H. L.; Zhang, X. L.; Xie, J. R.; Yang, S. T. Fe3O4/SiO2/C nanocomposite as a highperformance Fenton-like catalyst in a neutral environment. RSC Adv. 2016, 6, 8594–8600.

    Article  CAS  Google Scholar 

  50. Yoo, S. H.; Jang, D.; Joh, H. I.; Lee, S. Iron oxide/porous carbon as a heterogeneous Fenton catalyst for fast decomposition of hydrogen peroxide and efficient removal of methylene blue. J. Mater. Chem. A 2017, 5, 748–755.

    Article  CAS  Google Scholar 

  51. Zhan, G. W.; Zeng, H. C. A synthetic protocol for preparation of binary multi-shelled hollow spheres and their enhanced oxidation application. Chem. Mater. 2017, 29, 10104–10112.

    Article  CAS  Google Scholar 

  52. Sun, X. W.; Xu, D. Y.; Dai, P.; Liu, X. E.; Tan, F.; Guo, Q. J. Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator. Chem. Eng. J. 2020, 402, 125881.

    Article  CAS  Google Scholar 

  53. Shao, P. H.; Tian, J. Y.; Duan, X. G.; Yang, Y.; Shi, W. X.; Luo, X. B.; Cui, F. Y.; Luo, S. L.; Wang, S. B. Cobalt silicate hydroxide nanosheets in hierarchical hollow architecture with maximized cobalt active site for catalytic oxidation. Chem. Eng. J. 2019, 359, 79–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Laboratory of Chemical Engineering (No. SKL-ChE-21A02) and State Key Laboratory of Organic-Inorganic Composites (No. oic-202101009), China. The authors also wanna thank Dr. Junfeng Chen and Prof. Renjun Wang at School of Life Science (Qufu Normal University), for the analysis on the water quality of Liao River. The authors also thank the reviewers for their constructive suggestions on the great improvement of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wancheng Zhu.

Electronic Supplementary Material

12274_2021_3929_MOESM1_ESM.pdf

One-pot hydrothermal synthesis of hierarchical porous manganese silicate microspheres as excellent Fenton-like catalysts for organic dyes degradationl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Wang, L., Zhang, L. et al. One-pot hydrothermal synthesis of hierarchical porous manganese silicate microspheres as excellent Fenton-like catalysts for organic dyes degradation. Nano Res. 15, 2977–2986 (2022). https://doi.org/10.1007/s12274-021-3929-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3929-3

Keywords

Navigation