Skip to main content
Log in

Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transition metal phosphides (TMPs) are promising candidates for sodium ion battery anode materials because of their high theoretical capacity and earth abundance. Similar to many other P-based conversion type electrodes, TMPs suffer from large volumetric expansion upon cycling and thus quick performance fading. Moreover, TMPs are easily oxidized in air, resulting in a surface phosphate layer that not only decreases the electric conductivity but also hinders the Na ion transport. In this work, we present a general electrode design that overcomes these two major challenges facing TMPs. Using metal hydroxide and glucose as precursors, we show that the metal hydroxide can be converted into phosphide whereas the glucose simultaneously decomposes and forms carbon shell on the phosphide particles under a plasma ambient. Ni2P@C core shell structures as a proof-of-concept are designed and synthesized. The in situ formed carbon shell protects the Ni2P from oxidation. Moreover, the high-energy plasma introduces porosity and vacancies to the Ni2P and more importantly produces phosphorus-rich nickel phosphides (NiPx). As a result, the Ni2P@C electrodes achieve high sodium capacity (693 mAh·g−1 after 50 cycles at 100 mA·g−1) and excellent cyclability (steady capacity maintained for at least 1, 500 cycles). Our work provides a general strategy for enhancing the sodium storage performance of TMPs, and in general many other conversion type electrode materials that are unstable in air and suffer from large volumetric changes upon cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288.

    Article  CAS  Google Scholar 

  2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  CAS  Google Scholar 

  3. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  4. Chen, K. F.; Yin, S.; Xue, D. F. Active La-Nb-O compounds for fast lithium-ion energy storage. Tungsten 2019, 1, 287–296.

    Article  Google Scholar 

  5. Liu, X. Q.; Li, L. P.; Li, G. S. Partial surface phase transformation of Li3VO4 that enables superior rate performance and fast lithium-ion storage. Tungsten 2019, 1, 276–286.

    Article  Google Scholar 

  6. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

    Article  CAS  Google Scholar 

  7. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  CAS  Google Scholar 

  8. Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

    Article  Google Scholar 

  9. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  CAS  Google Scholar 

  10. Yang, F. H.; Gao, H.; Chen, J.; Guo, Z. P. Phosphorus-based materials as the anode for sodium-ion batteries. Small Methods 2017, 1, 1700216.

    Article  Google Scholar 

  11. Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329–6335.

    Article  CAS  Google Scholar 

  12. Sun, M.; Liu, H. J.; Qu, J. H.; Li, J. H. Earth-rich transition metal phosphide for energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600087.

    Article  Google Scholar 

  13. Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 2014, 20, 11980–11992.

    Article  CAS  Google Scholar 

  14. Liang, H. F.; Xia, C.; Jiang, Q.; Gandi, A. N.; Schwingenschlögl, U.; Alshareef, H. N. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy 2017, 35, 331–340.

    Article  CAS  Google Scholar 

  15. Zhou, K.; Zhou, W. J.; Yang, L. J.; Lu, J.; Cheng, S.; Mai, W.; Tang, Z. H.; Li, L. G.; Chen, S. W. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach. Adv. Funct. Mater. 2015, 25, 7530–7538.

    Article  Google Scholar 

  16. Feng, Y. Y.; Zhang, H. J.; Mu, Y. P.; Li, W. X.; Sun, J. L.; Wu, K.; Wang, Y. Monodisperse sandwich-like coupled quasi-graphene sheets encapsulating Ni2P nanoparticles for enhanced lithium-ion batteries. Chem. Eur. J. 2015, 21, 9229–9235.

    Article  CAS  Google Scholar 

  17. Bai, Y. J.; Zhang, H. J.; Fang, L.; Liu, L.; Qiu, H. J.; Wang, Y. Novel peapod array of Ni2P@ graphitized carbon fiber composites growing on Ti substrate: A superior material for Li-ion batteries and the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 5434–5441.

    Article  CAS  Google Scholar 

  18. Lu, Y.; Tu, J. P.; Xiong, Q. Q.; Qiao, Y. Q.; Zhang, J.; Gu, C. D.; Wang, X. L.; Mao, S. X. Carbon-decorated single-crystalline Ni2P nanotubes derived from Ni nanowire templates: A high-performance material for Li-ion batteries. Chem. Eur. J. 2012, 18, 6031–6038.

    Article  CAS  Google Scholar 

  19. Lu, Y.; Wang, X. L.; Mai, Y. J.; Xiang, J. Y.; Zhang, H.; Li, L.; Gu, C. D.; Tu, J. P.; Mao, S. X. Ni2P/graphene sheets as anode materials with enhanced electrochemical properties versus lithium. J. Phys. Chem. C 2012, 116, 22217–22225.

    Article  CAS  Google Scholar 

  20. Bai, Y. J.; Zhang, H. J.; Li, X.; Liu, L.; Xu, H. T.; Qiu, H. J.; Wang, Y. Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Nanoscale 2015, 7, 1446–1453.

    Article  CAS  Google Scholar 

  21. Xia, Q. B.; Li, W. J.; Miao, Z. C.; Chou, S. L.; Liu, H. K. Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res. 2017, 10, 4055–4081.

    Article  CAS  Google Scholar 

  22. Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

    Article  CAS  Google Scholar 

  23. Wang, X. J.; Chen, K.; Wang, G.; Liu, X. J.; Wang, H. Rational design of three-dimensional graphene encapsulated with hollow FeP@carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS Nano 2017, 11, 11602–11616.

    Article  CAS  Google Scholar 

  24. Li, Q.; Li, X. R.; Gu, J. W.; Li, Y. L.; Tian, Z. Q.; Pang, H. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 2021, 14, 1405–1412.

    Article  CAS  Google Scholar 

  25. Zhou, H. J.; Zheng, M. B.; Pang, H. Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores for oxygen evolution reaction. Chem. Eng. J. 2021, 416, 127884.

    Article  CAS  Google Scholar 

  26. Zhang, G. X.; Li, Y. L.; Xiao, X.; Shan, Y.; Bai, Y.; Xue, H.-G.; Pang, H.; Tian, Z. Q.; Xu, Q. In situ anchoring polymetallic phosphide nanoparticles within porous prussian blue analogue nanocages for boosting oxygen evolution catalysis. Nano Lett. 2021, 21, 3016–3025.

    Article  CAS  Google Scholar 

  27. Liang, H. F.; Alshareef, H. N. A plasma-assisted route to the rapid preparation of transition-metal phosphides for energy conversion and storage. Small Methods 2017, 1, 1700111.

    Article  Google Scholar 

  28. Xia, C.; Zhang, F.; Liang, H. F.; Alshareef, H. N. Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Res. 2017, 10, 4368–4377.

    Article  CAS  Google Scholar 

  29. Liang, H. F.; Gandi, A. N.; Anjum, D. H.; Wang, X. B.; Schwingenschlögl, U.; Alshareef, H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 2016, 16, 7718–7725.

    Article  CAS  Google Scholar 

  30. Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

    Article  CAS  Google Scholar 

  31. Zhang, Y. Q.; Rawat, R. S.; Fan, H. J. Plasma for rapid conversion reactions and surface modification of electrode materials. Small Methods 2017, 1, 1700164.

    Article  Google Scholar 

  32. Carenco, S.; Portehault, D.; Boissiè, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981–8065.

    Article  CAS  Google Scholar 

  33. You, B.; Jiang, N.; Sheng, M. L.; Bhushan, M. W.; Sun, Y. J. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 2016, 6, 714–721.

    Article  CAS  Google Scholar 

  34. Matthews, M. J.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Endo, M. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 1999, 59, R6585–R6588.

    Article  CAS  Google Scholar 

  35. Panneerselvam, A.; Malik, M. A.; Afzaal, M.; O’Brien, P.; Helliwell, M. The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. J. Am. Chem. Soc. 2008, 130, 2420–2421.

    Article  CAS  Google Scholar 

  36. Singh, K. P.; Bae, E. J.; Yu, J.-S. Fe-P: A new class of electroactive catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 3165–3168.

    Article  CAS  Google Scholar 

  37. Motojima, S.; Haguri, K.; Takahashi, Y.; Sugiyama, K. Chemical vapor deposition of nickel phosphide Ni2P. J. Less-Common Met. 1979, 64, 101–106.

    Article  CAS  Google Scholar 

  38. Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.

    Article  CAS  Google Scholar 

  39. Xu, D. F.; Chen, C. J.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y. H.; Zhang, L. N. A Hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501929.

    Article  Google Scholar 

  40. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    Article  CAS  Google Scholar 

  41. Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S.-E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.

    Article  Google Scholar 

  42. Dong, Y. F.; Wang, B. L.; Zhao, K. N.; Yu, Y. H.; Wang, X. D.; Mai, L. Q.; Jin, S. Air-stable porous Fe2N encapsulated in carbon microboxes with high volumetric lithium storage capacity and a long cycle life. Nano Lett. 2017, 17, 5740–5746.

    Article  CAS  Google Scholar 

  43. Liu, T. C.; Pell, W. G.; Conway, B. E.; Roberson, S. L. Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide. J. Electrochem. Soc. 1998, 145, 1882–1888.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21805136 and 22001081), the Startup Foundation for Introducing Talent of NUIST (Nos. 1521622101002 and 1521622101003), and the open research fund of State Key Laboratory of Organic Electronics and Information Displays.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yizhou Zhang, Hanfeng Liang or Wei Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Zhu, G., Zhang, Y. et al. Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res. 15, 2023–2029 (2022). https://doi.org/10.1007/s12274-021-3738-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3738-8

Keywords

Navigation