Skip to main content
Log in

High entropy spinel oxide for efficient electrochemical oxidation of ammonia

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ammonia has emerged as a promising energy carrier owing to its carbon neutral content and low expense in long-range transportation. Therefore, development of a specific pathway to release the energy stored in ammonia is therefore in urgent demand. Electrochemical oxidation provides a convenient and reliable route to attain efficient utilization of ammonia. Here, we report that the high entropy (Mn, Fe, Co, Ni, Cu)3O4 oxides can achieve high electrocatalytic activity for ammonia oxidation reaction (AOR) in non-aqueous solutions. The AOR onset overpotential of (Mn, Fe, Co, Ni, Cu)3O4 is 0.70 V, which is nearly 0.2 V lower than that of their most active single metal cation counterpart. The mass spectroscopy study reveals that (Mn, Fe, Co, Ni, Cu)3O4 preferentially oxidizes ammonia to environmentally friendly diatomic nitrogen with a Faradic efficiency of over 85%. The X-ray photoelectron spectroscopy (XPS) result indicates that the balancing metal d-band of Mn and Cu cations helps retain a long-lasting electrocatalytic activity. Overall, this work introduces a new family of earth-abundant transition metal high entropy oxide electrocatalysts for AOR, thus heralding a new paradigm of catalyst design for enabling ammonia as an energy carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Møller, K. T.; Jensen, T. R.; Akiba, E.; Li, H. W. Hydrogen—A sustainable energy carrier. Progr. Nat. Sci.: Mater. Int. 2017, 27, 34–40.

    Article  CAS  Google Scholar 

  2. Xue, M. Q.; Wang, Q.; Lin, B. L.; Tsunemi, K. Assessment of ammonia as an energy carrier from the perspective of carbon and nitrogen footprints. ACS Sustain. Chem. Eng. 2019, 7, 12494–12500.

    CAS  Google Scholar 

  3. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

    Article  CAS  Google Scholar 

  4. Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

    Article  CAS  Google Scholar 

  5. Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2Wo6 electrocatalyst. Nano Res., in press, https://doi.org/10.1007/s12274-020-3276-9.

  6. Li, S. X.; Wang, Y. Y.; Liang, J.; Xu, T.; Ma, D. W.; Liu, Q.; Li, T. S.; Xu, S. R.; Chen, G.; Asiri, A. M. et al. TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. Mater. Today Phys. 2021, 18, 100396.

    Article  CAS  Google Scholar 

  7. Umeyama, T.; Tezuka, N.; Kawashima, F.; Seki, S.; Matano, Y.; Nakao, Y.; Shishido, T.; Nishi, M.; Hirao, K.; Lehtivuori, H. et al. Carbon nanotube wiring of donor-acceptor nanograins by self-assembly and efficient charge transport. Angew. Chem., Int. Ed. 2011, 50, 4615–4619.

    Article  CAS  Google Scholar 

  8. Adli, N. M.; Zhang, H.; Mukherjee, S.; Wu, G. Review—Ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J. Electrochem. Soc. 2018, 165, J3130–J3147.

  9. Siddharth, K.; Chan, Y.; Wang, L.; Shao, M. H. Ammonia electro-oxidation reaction: Recent development in mechanistic understanding and electrocatalyst design. Curr. Opin. Electrochem. 2018, 9, 151–157.

    Article  CAS  Google Scholar 

  10. Katsounaros, I.; Figueiredo, M. C.; Calle-Vallejo, F.; Li, H. J.; Gewirth, A. A.; Markovic, N. M.; Koper, M. T. M. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(1 0 0) in alkaline environment. J. Catal. 2018, 359, 82–91.

    Article  CAS  Google Scholar 

  11. Almomani, F.; Bhosale, R.; Khraisheh, M.; Kumar, A.; Tawalbeh, M. Electrochemical oxidation of ammonia on nickel oxide nanoparticles. Int. J. Hydrogen Energy 2020, 45, 10398–10408.

    Article  CAS  Google Scholar 

  12. Shih, Y. J.; Huang, Y. H.; Huang, C. P. In-situ electrochemical formation of nickel oxyhydroxide (NiOOH) on metallic nickel foam electrode for the direct oxidation of ammonia in aqueous solution. Electrochim. Acta 2018, 281, 410–419.

    Article  CAS  Google Scholar 

  13. Schiffer, Z. J.; Lazouski, N.; Corbin, N.; Manthiram, K. Nature of the first electron transfer in electrochemical ammonia activation in a nonaqueous medium. J. Phys. Chem. C 2019, 123, 9713–9720.

    Article  CAS  Google Scholar 

  14. He, S.; Chen, Y. F.; Wang, M. D.; Liu, K.; Novello, P.; Li, X. Q.; Zhu, S. Y.; Liu, J. Metal nitride nanosheets enable highly efficient electrochemical oxidation of ammonia. Nano Energy 2021, 80, 105528.

    Article  CAS  Google Scholar 

  15. Peng, W.; Xiao, L.; Huang, B.; Zhuang, L.; Lu, J. T. Inhibition effect of surface oxygenated species on ammonia oxidation reaction. J. Phys. Chem. C 2011, 115, 23050–23056.

    Article  CAS  Google Scholar 

  16. Little, D. J.; Smith III, M. R.; Hamann, T. W. Electrolysis of liquid ammonia for hydrogen generation. Energy Environ. Sci. 2015, 8, 2775–2781.

    Article  CAS  Google Scholar 

  17. Goshome, K.; Yamada, T.; Miyaoka, H.; Ichikawa, T.; Kojima, Y. High compressed hydrogen production via direct electrolysis of liquid ammonia. Int. J. Hydrogen Energy 2016, 41, 14529–14534.

    Article  CAS  Google Scholar 

  18. Ghosh, S.; Banerjee, P.; Nandi, P. K. Heterolytic N-H bond activation of ammonia by dinuclear [{M(µ-OMe)}2] complexes (M = Sc-V and Mn-Ni): A theoretical investigation. Comput. Theor. Chem. 2018, 1145, 44–53.

    Article  CAS  Google Scholar 

  19. Robinson, T. P.; De Rosa, D. M.; Aldridge, S.; Goicoechea, J. M. E-H bond activation of ammonia and water by a geometrically constrained phosphorus (III) compound. Angew. Chem., Int. Ed. 2015, 54, 13758–13763.

    Article  CAS  Google Scholar 

  20. Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

    Article  CAS  Google Scholar 

  21. Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217.

    Article  CAS  Google Scholar 

  22. Greeley, J. Theoretical heterogeneous catalysis: Scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 605–635.

    Article  Google Scholar 

  23. Logadottir, A.; Rod, T. H.; Nørskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. H. The Brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 2001, 197, 229–231.

    Article  CAS  Google Scholar 

  24. Wang, Z. Y.; Wang, H. F.; Hu, P. Possibility of designing catalysts beyond the traditional volcano curve: A theoretical framework for multi-phase surfaces. Chem. Sci. 2015, 6, 5703–5711.

    Article  CAS  Google Scholar 

  25. Nørskov, J. K.; Studt, F.; Abild-Pedersen, F.; Bligaard, T. Energy trends in catalysis. In Fundamental Concepts in Heterogeneous Catalysis; Nørskov, J. K.; Studt, F.; Abild-Pedersen, F.; Bligaard, T., Eds.; Wiley: Hoboken, 2014; pp 85–96.

    Google Scholar 

  26. Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.

    Article  CAS  Google Scholar 

  27. Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

    Article  CAS  Google Scholar 

  28. Zhang, Y. High-entropy materials: A brief introduction; Springer: Singapore, 2019.

    Book  Google Scholar 

  29. George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

    Article  CAS  Google Scholar 

  30. Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309.

    Article  CAS  Google Scholar 

  31. Zhang, R. Z.; Reece, M. J. Review of high entropy ceramics: Design, synthesis, structure and properties. J. Mater. Chem. A 2019, 7, 22148–22162.

    Article  CAS  Google Scholar 

  32. Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93.

    Article  CAS  Google Scholar 

  33. Sarkar, A.; Wang, Q. S.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236.

    Article  CAS  Google Scholar 

  34. Löffler, T.; Savan, A.; Garzón-Manjón, A.; Meischein, M.; Scheu, C.; Ludwig, A.; Schuhmann, W. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 2019, 4, 1206–1214.

    Article  CAS  Google Scholar 

  35. Meng, H.; Wu, X.; Ci, C.; Zhang, Q.; Li, Z. A density functional theory study of NH3 and no adsorption on the β-MnO2 (110) surface. Prog. React. Kinet. Mec. 2018, 43, 219–228.

    Article  CAS  Google Scholar 

  36. Herron, J. A.; Ferrin, P.; Mavrikakis, M. Electrocatalytic oxidation of ammonia on transition-metal surfaces: A first-principles study. J. Phys. Chem. C 2015, 119, 14692–14701.

    Article  CAS  Google Scholar 

  37. Chen, Q.; Wang, R.; Yu, M. H.; Zeng, Y. X.; Lu, F. Q.; Kuang, X. J.; Lu, X. H. Bifunctional iron-nickel nitride nanoparticles as flexible and robust electrode for overall water splitting. Electrochim. Acta 2017, 247, 666–673.

    Article  CAS  Google Scholar 

  38. Li, M.; Jijie, R.; Barras, A.; Roussel, P.; Szunerits, S.; Boukherroub, R. NiFe layered double hydroxide electrodeposited on Ni foam coated with reduced graphene oxide for high-performance supercapacitors. Electrochim. Acta 2019, 302, 1–9.

    Article  CAS  Google Scholar 

  39. Wang, D. D.; Liu, Z. J.; Du, S. Q.; Zhang, Y. Q.; Li, H.; Xiao, Z. H.; Chen, W.; Chen, R.; Wang, Y. Y.; Zou, Y. Q. et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 2019, 7, 24211–24216.

    Article  CAS  Google Scholar 

  40. Madhavi, J. Comparison of average crystallite size by X-ray peak broadening and Williamson-Hall and size-strain plots for VO2+ doped ZnS/CdS composite nanopowder. SN Appl. Sci. 2019, 1, 1509.

    Article  CAS  Google Scholar 

  41. Xu, W.; Du, D. W.; Lan, R.; Humphreys, J.; Miller, D. N.; Walker, M.; Wu, Z. C.; Irvine, J. T. S.; Tao, S. W. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl. Catal. B Environ. 2018, 237, 1101–1109.

    Article  CAS  Google Scholar 

  42. Song, P. F.; Wang, H.; Kang, L.; Ran, B. C.; Song, H. S.; Wang, R. M. Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon. Chem. Commun. 2019, 55, 687–690.

    Article  CAS  Google Scholar 

  43. Zou, R. J.; Xu, M. D.; He, S. A.; Han, X. Y.; Lin, R. J.; Cui, Z.; He, G. J.; Brett, D. J. L.; Guo, Z. X.; Hu, J. Q. et al. Cobalt nickel nitride coated by a thin carbon layer anchoring on nitrogen-doped carbon nanotube anodes for high-performance lithium-ion batteries. J. Mater. Chem. A 2018, 6, 19853–19862.

    Article  CAS  Google Scholar 

  44. Naghash, A. R.; Etsell, T. H.; Xu, S. XRD and XPS study of Cu-Ni interactions on reduced copper-nickel-aluminum oxide solid solution catalysts. Chem. Mater. 2006, 18, 2480–2488.

    Article  CAS  Google Scholar 

  45. Li, X.; Guan, C.; Hu, Y. T.; Wang, J. Nanoflakes of Ni-Co LDH and Bi2O3 assembled in 3D carbon fiber network for high-performance aqueous rechargeable Ni/Bi battery. ACS Appl. Mater. Interfaces 2017, 9, 26008–26015.

    Article  CAS  Google Scholar 

  46. Jin, Z. Y.; Lyu, J.; Zhao, Y. L.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Kai, J. J.; Qiu, H. J. Top-down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis. Chem. Mater. 2021, 33, 1771–1780.

    Article  CAS  Google Scholar 

  47. Vázquez-Olmos, A.; Redón, R.; Rodríguez-Gattorno, G.; Mata-Zamora, M. E.; Morales-Leal, F.; Fernández-Osorio, A. L.; Saniger, J. M. One-step synthesis of Mn3O4 nanoparticles: Structural and magnetic stud. J. Colloid Interface Sci. 2005, 291, 175–180.

    Article  CAS  Google Scholar 

  48. Swadźba-Kwaśny, M.; Chancelier, L.; Ng, S.; Manyar, H. G.; Hardacre, C.; Nockemann, P. Facile in situ synthesis of nanofluids based on ionic liquids and copper oxide clusters and nanoparticles. Dalton Trans. 2012, 41, 219–227.

    Article  Google Scholar 

  49. Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.

    Article  Google Scholar 

  50. Yin, X. L.; Han, H. M.; Kubo, M.; Miyamoto, A. Adsorption of NH3, NO2 and NO on copper-aluminate catalyst: An ab initio density functional study. Theor. Chem. Acc. 2003, 109, 190–194.

    Article  CAS  Google Scholar 

  51. Neta, P.; Huie, R. E.; Ross, A. B. J. J. o. P.; Data, C. R. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284.

    Article  CAS  Google Scholar 

  52. Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C. L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the Energy Research Seed Grant from Duke Energy Initiative, the National Science Foundation (Nos. CHE-1565657 and CHE-1954838) and the Army Research Office (W911NFN-18-2-004). S. H. and P. N. are both supported by fellowships from Department of Chemistry at Duke University. This work was performed in part at the Duke University Shared Materials Instrumentation Facility (SMIF), a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is supported by the National Science Foundation (award number ECCS-2025064) as part of the National Nanotechnology Coordinated Infrastructure (NNCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Somayaji, V., Wang, M. et al. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 15, 4785–4791 (2022). https://doi.org/10.1007/s12274-021-3665-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3665-8

Keywords

Navigation