Skip to main content
Log in

Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, phosphorus doped graphene supported PtNiP nanocluster electrocatalyst (PtNiP/P-graphene) was successfully prepared via a simple hypophosphite-assisted co-reduction method. The improved anchoring force and increased anchoring sites of graphene support result from phosphorus doping as well as size-confined growth effect of NaH2PO2 leads to uniform dispersion of ultrafine PtNiP nanoclusters. Doped P also promotes the removal of CO-like intermediate by adjusting Pt electronic structure combining with alloyed Ni via electronic effects. As a result, the as-prepared PtNiP/P-graphene catalyst with more exposed active sites and optimized electronic structure of Pt alloy shows excellent electrocatalytic performances for methanol oxidation reaction (MOR) both in activity and durability in an acidic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H. Q.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350–363.

    Article  CAS  Google Scholar 

  2. Wang, W.; Chen, X. W.; Zhang, X.; Ye, J. Y.; Xue, F.; Zhen, C.; Liao, X. Y.; Li, H. Q.; Li, P. T.; Liu, M. C. et al. Quatermetallic Pt-based ultrathin nanowires intensified by Rh enable highly active and robust electrocatalysts for methanol oxidation. Nano Energy 2020, 71, 104623.

    Article  CAS  Google Scholar 

  3. Long, X. Y.; Yin, P.; Lei, T.; Wang, K. C.; Zhan, Z. X. Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF. Appl. Catal. B-Environ. 2020, 260, 118187.

    Article  CAS  Google Scholar 

  4. Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

    Article  CAS  Google Scholar 

  5. Zhang, Q.; Yue, F.; Xu, L. J.; Yao, C. X.; Priestley, R. D.; Hou, S. F. Paper-based porous graphene/single-walled carbon nanotubes supported Pt nanoparticles as freestanding catalyst for electro-oxidation of methanol. Appl. Catal. B-Environ. 2019, 257, 117886.

    Article  CAS  Google Scholar 

  6. Chang, J. Q.; Song, L. T.; Xu, Y. Q.; Ma, Y. H.; Liang, C.; Jiang, W. Y.; Zhang, Y. Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation. Nano Res. 2020, 13, 67–71.

    Article  CAS  Google Scholar 

  7. Chen, G. J.; Dai, Z. F.; Sun, L.; Zhang, L.; Liu, S.; Bao, H. W.; Bi, J. L.; Yang, S. C.; Ma, F. Synergistic effects of platinum-cerium carbonate hydroxides-reduced graphene oxide on enhanced durability for methanol electro-oxidation. J. Mater. Chem. A 2019, 7, 6562–6571.

    Article  CAS  Google Scholar 

  8. Bai, X. X.; Geng, J. R.; Zhao, S.; Li, H. X.; Li, F. J. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation. ACS Appl. Mater. Interfaces 2020, 12, 23046–23050.

    Article  CAS  Google Scholar 

  9. Li, J. H.; You, S. J.; Liu, M. Y.; Zhang, P.; Dai, Y.; Yu, Y.; Ren, N. Q.; Zou, J. L. ZIF-8-derived carbon-thin-layer protected WC/W24O68 micro-sized rods with enriched oxygen vacancies as efficient Pt co-catalysts for methanol oxidation and oxygen reduction. Appl. Catal. B-Environ. 2020, 265, 118574.

    Article  CAS  Google Scholar 

  10. Yang, C. Z.; Jiang, Q. G.; Huang, H. J.; He, H. Y.; Yang, L.; Li, W. H. Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti3C2Tx MXene nanosheets for efficient methanol oxidation. ACS Appl. Mater. Interfaces 2020, 12, 23822–23830.

    Article  CAS  Google Scholar 

  11. Fang, H.; Chen, Y. T.; Wen, M.; Wu, Q. S.; Zhu, Q. J. SnNi nanoneedles assembled 3D radial nanostructure loaded with SnNiPt nanoparticles: Towards enhanced electrocatalysis performance for methanol oxidation. Nano Res. 2017, 10, 3929–3940.

    Article  CAS  Google Scholar 

  12. Zhang, W. Y.; Yao, Q. S.; Jiang, G. P.; Li, C.; Fu, Y. S.; Wang, X.; Yu, A. P.; Chen, Z. W. Molecular trapping strategy to stabilize subnanometric Pt Clusters for highly active electrocatalysis. ACS Catal. 2019, 9, 11603–11613.

    Article  CAS  Google Scholar 

  13. Zhong, J. P.; Li, L. L.; Waqas, M.; Wang, X. Q.; Fan, Y. J.; Qi, J. H.; Yang, B.; Rong, C. Y.; Chen, W.; Sun, S. G. Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction. Electrochim. Acta 2019, 322, 134677.

    Article  CAS  Google Scholar 

  14. Tang, H. R.; Hao, H.; Zhu, J. H.; Guan, X. P.; Qiu, B. J.; Li, Y. X. Single Pt-Pd bimetallic nanoparticle electrode: Controllable fabrication and unique electrocatalytic performance for the methanol oxidation reaction. Chem.—Eur. J. 2019, 25, 4935–4940.

    Article  CAS  Google Scholar 

  15. Ouyang, Y. R.; Cao, H. J.; Wu, H. J.; Wu, D. B.; Wang, F. Q.; Fan, X. J.; Yuan, W. Y.; He, M. X.; Zhang, L. Y.; Li, C. M. Tuning Pt-skinned PtAg nanotubes in nanoscales to efficiently modify electronic structure for boosting performance of methanol electrooxidation. Appl. Catal. B-Environ. 2020, 265, 118606.

    Article  CAS  Google Scholar 

  16. Wang, H. F.; Zhang, K. F.; Qiu, J.; Wu, J.; Shao, J. W.; Wang, H. J.; Zhang, Y. J.; Han, J.; Zhang, Y.; Yan, L. F. Ternary PtFeCo alloys on graphene with high electrocatalytic activities for methanol oxidation. Nanoscale 2020, 12, 9824–9832.

    Article  CAS  Google Scholar 

  17. Bi, J. L.; Gao, P. F.; Wang, B.; Yu, X. J.; Kong, C. C.; Xu, L.; Zhang, X. J.; Yang, S. C. Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure. J. Mater. Chem. A 2020, 8, 6638–6646.

    Article  CAS  Google Scholar 

  18. Shan, A. X.; Huang, S. Y.; Zhao, H. F.; Jiang, W. G.; Teng, X. A.; Huang, Y. C.; Chen, C. P.; Wang, R. M.; Lau, W. M. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 2020, 13, 3088–3097.

    Article  CAS  Google Scholar 

  19. Lu, Q. Q.; Sun, L. T.; Zhao, X.; Huang, J. S.; Han, C.; Yang, X. R. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 2018, 11, 2562–2572.

    Article  CAS  Google Scholar 

  20. Fu, X. Y.; Wan, C. Z.; Zhang, A. X.; Zhao, Z. P.; Huyan, H. X.; Pan, X. Q.; Du, S. J.; Duan, X. F.; Huang, Y. Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res. 2020, 13, 1472–1478.

    Article  CAS  Google Scholar 

  21. Zhao, F. L.; Yuan, Q.; Luo, B.; Li, C. Z.; Yang, F.; Yang, X. T.; Zhou, Z. Y. Surface composition-tunable octahedral PtCu nanoalloys advance the electrocatalytic performance on methanol and ethanol oxidation. Sci. China Mater. 2019, 62, 1877–1887.

    Article  CAS  Google Scholar 

  22. Yin, S. L.; Kumar, R. D.; Yu, H. J.; Li, C. J.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Pt@Mesoporous PtRu yolk-shell nanostructured electrocatalyst for methanol oxidation reaction. ACS Sustain. Chem. Eng. 2019, 7, 14867–14873.

    Article  CAS  Google Scholar 

  23. Zhang, J. M.; Qu, X. M.; Han, Y.; Shen, L. F.; Yin, S. H.; Li, G.; Jiang, Y. X.; Sun, S. G. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl. Catal. B-Environ. 2020, 263, 118345.

    Article  CAS  Google Scholar 

  24. Li, Z. J.; Jiang, X.; Wang, X. R.; Hu, J. R.; Liu, Y. Y.; Fu, G. T.; Tang, Y. W. Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B-Environ. 2020, 277, 119135.

    Article  CAS  Google Scholar 

  25. Tang, M.; Luo, S. P.; Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res. 2018, 11, 4786–4795.

    Article  CAS  Google Scholar 

  26. Huang, K.; Yan, Y. C.; Yu, X. G.; Zhang, H.; Yang, D. R. Graphene coupled with Pt cubic nanoparticles for high performance, air-stable graphene-silicon solar cells. Nano Energy 2017, 32, 225–231.

    Article  CAS  Google Scholar 

  27. Lee, D.; Kim, Y.; Kwon, Y.; Lee, J.; Kim, T. W.; Noh, Y.; Kim, W. B.; Seo, M. H.; Kim, K.; Kim, H. J. Boosting the electrocatalytic glycerol oxidation performance with highly-dispersed Pt nanoclusters loaded on 3D graphene-like microporous carbon. Appl. Catal. B-Environ. 2019, 245, 555–568.

    Article  CAS  Google Scholar 

  28. Sun, Y.; Zhou, Y. J.; Liu, Y.; Wu, Q. Y.; Zhu, M. M.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Res. 2020, 13, 2683–2690.

    Article  CAS  Google Scholar 

  29. Park, C.; Lee, E.; Lee, G.; Tak, Y. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells. Appl. Catal. B-Environ. 2020, 268, 118414.

    Article  CAS  Google Scholar 

  30. Zhao, L.; Sui, X. L.; Li, J. Z.; Zhang, J. J.; Zhang, L. M.; Huang, G. S.; Wang, Z. B. Supramolecular assembly promoted synthesis of three-dimensional nitrogen doped graphene frameworks as efficient electrocatalyst for oxygen reduction reaction and methanol electrooxidation. Appl. Catal. B-Environ. 2018, 231, 224–233.

    Article  CAS  Google Scholar 

  31. Que, L. K.; Zhang, L.; Wu, C.; Zhang, Y.; Pei, C. H.; Nie, F. D. Pt-decorated graphene network materials for supercapacitors with enhanced power density. Carbon 2019, 145, 281–289.

    Article  CAS  Google Scholar 

  32. Li, H. Y.; Zhang, L. H.; Li, L.; Wu, C. W.; Huo, Y. J.; Chen, Y.; Liu, X. J.; Ke, X. X.; Luo, J.; Van Tendeloo, G. Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis. Nano Res. 2019, 12, 33–39.

    Article  CAS  Google Scholar 

  33. Haidari, M. M.; Kim, H.; Kim, J. H.; Park, M.; Lee, H.; Choi, J. S. Doping effect in graphene-graphene oxide interlayer. Sci. Rep. 2020, 10, 8258.

    Article  CAS  Google Scholar 

  34. Kim, G.; Kim, S. S.; Jeon, J.; Yoon, S. I.; Hong, S.; Cho, Y. J.; Misra, A.; Ozdemir, S.; Yin, J.; Ghazaryan, D. et al. Planar and van der Waals heterostructures for vertical tunnelling single electron transistors. Nat. Commun. 2019, 10, 230.

    Article  CAS  Google Scholar 

  35. Dyck, O.; Zhang, C.; Rack, P. D.; Fowlkes, J. D.; Sumpter, B.; Lupini, A. R.; Kalinin, S. V.; Jesse, S. Electron-beam introduction of heteroatomic Pt-Si structures in graphene. Carbon 2020, 161, 750–757.

    Article  CAS  Google Scholar 

  36. Gorle, D. B.; Kulandainathan, M. A. One-pot synthesis of highly efficient graphene based three-dimensional hybrids as catalyst supporting materials for electro-oxidation of liquid fuels. J. Mater. Chem. A 2017, 5, 15273–15286.

    Article  CAS  Google Scholar 

  37. Ali, A.; Shen, P. K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A 2019, 7, 22189–22217.

    Article  CAS  Google Scholar 

  38. Agnoli, S.; Favaro, M. Doping graphene with boron: A review of synthesis methods, physicochemical characterization, and emerging applications. J. Mater. Chem. A 2016, 4, 5002–5025.

    Article  CAS  Google Scholar 

  39. Tian, Y.; Mei, R.; Xue, D. Z.; Zhang, X.; Peng, W. Enhanced electrocatalytic hydrogen evolution in graphene via defect engineering and heteroatoms co-doping. Electrochim. Acta 2016, 219, 781–789.

    Article  CAS  Google Scholar 

  40. Wang, C. N.; Luo, S. Y.; Yang, Y. Y.; Ren, D. S.; Yu, X. Defect-rich graphene architecture induced by nitrogen and phosphorus dual doping for high-performance supercapacitors. Energy Technol. 2020, 8, 1900685.

    Article  CAS  Google Scholar 

  41. Chen, Z. Q.; Wu, H. B.; Li, J.; Wang, Y. F.; Guo, W.; Cao, C. B.; Chen, Z. Defect enhanced CoP/reduced graphene oxide electrocatalytic hydrogen production with Pt-like activity. Appl. Catal. B-Environ. 2020, 265, 118576.

    Article  CAS  Google Scholar 

  42. Yu, X.; Kang, Y. B.; Park, H. S. Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon 2016, 101, 49–56.

    Article  CAS  Google Scholar 

  43. Fan, X.; Xu, H.; Zuo, S. S.; Liang, Z. P.; Yang, S. H.; Chen, Y. Preparation and supercapacitive properties of phosphorus-doped reduced graphene oxide hydrogel. Electrochim. Acta 2020, 330, 135207.

    Article  CAS  Google Scholar 

  44. Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054–2060.

    Article  CAS  Google Scholar 

  45. Wen, Y. Y.; Wang, B.; Huang, C. C.; Wang, L. Z.; Hulicova-Jurcakova D. Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem.—Eur. J. 2015, 21, 80–85.

    Article  CAS  Google Scholar 

  46. Zhan, J.; Tan, D. C. L.; Prakitritanon, S.; Lin, M.; Sato, H. Extremely low catalyst loading for electroless deposition on a non-conductive surface by a treatment for reduced graphene oxide. Chem. Commun. 2017, 53, 9198–9201.

    Article  CAS  Google Scholar 

  47. Hu, K. M.; Xue, Z. Y.; Liu, Y. Q.; Song, P. H.; Le, X. H.; Peng, B.; Yan, H.; Di, Z. F.; Xie, J.; Lin, L. W. et al. Corrigendum to “Probing built-in stress effect on the defect density of stretched monolayer graphene membranes” [Carbon 152 (2019) 233–240]. Carbon 2019, 155, 756.

    Article  CAS  Google Scholar 

  48. Ma, Y. Y.; Wang, H.; Lv, W. Z.; Ji, S.; Pollet, B. G.; Li, S. X.; Wang, R. F. Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine. RSC Adv. 2015, 5, 68655–68661.

    Article  CAS  Google Scholar 

  49. Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao, M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774.

    Article  CAS  Google Scholar 

  50. Ma, Y. J.; Wang, R. F.; Wang, H.; Linkov, V.; Ji, S. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction. Phys. Chem. Chem. Phys. 2014, 16, 3593–3602.

    Article  CAS  Google Scholar 

  51. Ma, Y. J.; Li, H.; Wang, H.; Ji, S.; Linkov, V.; Wang, R. F. Ultrafine amorphous PtNiP nanoparticles supported on carbon as efficiency electrocatalyst for oxygen reduction reaction. J. Power Sources 2014, 259, 87–91.

    Article  CAS  Google Scholar 

  52. Kuang, D.; Xu, L. Y.; Liu, L.; Hu, W. B.; Wu, Y. T. Graphene-nickel composites. Appl. Surf. Sci. 2013, 273, 484–490.

    Article  CAS  Google Scholar 

  53. Miao, X. G.; Yin, R. Y.; Ge, X. L.; Li, Z. Q.; Yin, L. W. Ni2P@carbon core-shell nanoparticle-arched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries. Small 2017, 13, 1702138.

    Article  CAS  Google Scholar 

  54. Yuan, H.; Liu, J.; Jiao, Q. Z.; Li, Y. J.; Liu, X. F.; Shi, D. X.; Wu, Q.; Zhao, Y.; Li, H. S. Sandwich-like octahedral cobalt disulfide/reduced graphene oxide as an efficient Pt-free electrocatalyst for high-performance dye-sensitized solar cells. Carbon 2017, 119, 225–234.

    Article  CAS  Google Scholar 

  55. Ji, X. Q.; Zhang, R.; Shi, X. F.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. Fabrication of hierarchical CoP nanosheet@microwire arrays via space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions. Nanoscale 2018, 10, 7941–7945.

    Article  CAS  Google Scholar 

  56. Li, C. J.; Xu, Y.; Yang, D. D.; Qian, X. Q.; Chai, X. J.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Boosting electrocatalytic activities of Pt-based mesoporous nanoparticles for overall water splitting by a facile Ni, P co-incorporation strategy. ACS Sustain. Chem. Eng. 2019, 7, 9709–9716.

    Article  CAS  Google Scholar 

  57. Huang, H.; Wang, H.; Hu, W. X.; Lv, W. J.; Ye, W. C. Exploring the role of nickel in the formation of amorphous Pt-based metallic alloys for methanol electro-oxidation with significant enhancement. Electrochem. commun. 2017, 82, 107–111.

    Article  CAS  Google Scholar 

  58. Chen, Y. F.; Yang, Y. F.; Fu, G. T.; Xu, L.; Sun, D. M.; Lee, J. M.; Tang, Y. W. Core-shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. J. Mater. Chem. A 2018, 6, 10632–10638.

    Article  CAS  Google Scholar 

  59. Wu, G.; Li, L.; Xu, B. Q. Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation. Electrochim. Acta 2004, 50, 1–10.

    Article  CAS  Google Scholar 

  60. Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy Environ. Sci. 2014, 7, 1628–1632.

    Article  CAS  Google Scholar 

  61. Sun, Y. R.; Du, C. Y.; Han, G. K.; Qu, Y. T.; Du, L.; Wang, Y. J.; Chen, G. Y.; Gao, Y. Z.; Yin, G. P. Boron, nitrogen co-doped graphene: A superior electrocatalyst support and enhancing mechanism for methanol electrooxidation. Electrochim. Acta 2016, 212, 313–321.

    Article  CAS  Google Scholar 

  62. Hsing, I. M.; Wang, X.; Leng, Y. J. Electrochemical impedance studies of methanol electro-oxidation on Pt/C thin film electrode. J. Electrochem. Soc. 2002, 149, A615–A621.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 21733004, U1601211, 21673221, 21733004, 21603216, and U19A2016), the National Science and Technology Major Project (No. 2018YFB1502703), Jilin Province Science and Technology Development Program (Nos. 20170520150JH, 20180101030JC, 20190201270JC, and 20200201001JC), the Chinese Academy of Sciences STS Project (No. KFJ-STS-ZDTP-088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Jin, Guiling Wang or Wei Xing.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Li, G., Ma, R. et al. Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Res. 14, 2853–2860 (2021). https://doi.org/10.1007/s12274-021-3300-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3300-8

Keywords

Navigation