Skip to main content
Log in

Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Surface engineering is known as an effective strategy to enhance the catalytic properties of Pt-based nanomaterials. Herein, we report on surface engineering Ni-Pt nanoalloys with a facile method by varying the Ni doping concentration and oleylamine/oleicacid surfactant-mix. The alloy-composition, exposed facet condition, and surface lattice strain are, thereby manipulated to optimize the catalytic efficiency of such nanoalloys for methanol oxidation reaction (MOR). Exemplary nanoalloys including Ni0.69Pt0.31 truncated octahedrons, Ni0.45Pt0.55 nanomultipods and Ni0.20Pt0.80 nanoflowers are thoroughly characterized, with a commercial Pt/C catalyst as a common benchmark. Their variations in MOR catalytic efficiency are significant: 2.2 A/mgPt for Ni0.20Pt0.80 nanoflowers, 1.2 A/mgPt for Ni0.45Pt0.55 nanomultipods, 0.7 A/mgPt for Ni0.69Pt0.31 truncated octahedrons, and 0.6 A/mgPt for the commercial Pt/C catalysts. Assisted by density functional theory calculations, we correlate these observed catalysis-variations particularly to the intriguing presence of surface interplanar-strains, such as {111} facets with an interplanar-tensile-strain of 2.6% and {200} facets with an interplanar-tensile-strain of 3.5%, on the Ni0.20Pt0.80 nanoflowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shao, Q.; Wang, P. T.; Zhu, T.; Huang, X. Q. Low dimensional platinum-based bimetallic nanostructures for advanced catalysis. Acc. Chem. Res. 2019, 52, 3384–3396.

    CAS  Google Scholar 

  2. Zhang, X. B.; Han, S. B.; Zhu, B. E.; Zhang, G. H.; Li, X. Y.; Gao, Y.; Wu, Z. X.; Yang, B.; Liu, Y. F.; Baaziz, W. et al. Reversible loss of core-shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2020, 3, 411–417.

    CAS  Google Scholar 

  3. Wang, R. M. The dynamics of the peel. Nat. Catal. 2020, 3, 333–334.

    CAS  Google Scholar 

  4. Shan, A. X.; Chen, C. P.; Zhang, W.; Cheng, D. J.; Shen, X.; Yu, R. C.; Wang, R. M. Giant enhancement and anomalous temperature dependence of magnetism in monodispersed NiPt2 nanoparticles. Nano Res. 2017, 10, 3238–3247.

    CAS  Google Scholar 

  5. Zhang, L.; Doyle-Davis, K.; Sun, X. L. Pt-Based electrocatalysts with high atom utilization efficiency: From nanostructures to single atoms. Energy Environ. Sci. 2019, 12, 492–517.

    CAS  Google Scholar 

  6. Tian, N.; Lu, B. A.; Yang, X. D.; Huang, R.; Jiang, Y. X.; Zhou, Z. Y.; Sun, S. G. Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochem. Energy Rev. 2018, 1, 54–83.

    CAS  Google Scholar 

  7. Kong, F. P.; Liu, S. H.; Li, J. J.; Du, L.; Banis, M. N.; Zhang, L.; Chen, G. Y.; Doyle-Davis, K.; Liang, J. N.; Wang, S. Z. et al. Trimetallic Pt-Pd-Ni octahedral nanocages with subnanometer thick-wall towards high oxygen reduction reaction. Nano Energy 2019, 64, 103890.

    CAS  Google Scholar 

  8. Kong, F. P.; Du, C. Y.; Ye, J. Y.; Chen, G. Y.; Du, L.; Yin, G. P. Selective surface engineering of heterogeneous nanostructures: In situ unraveling of the catalytic mechanism on Pt-Au catalyst. Acs Catal. 2017, 7, 7923–7929.

    CAS  Google Scholar 

  9. Puangsombut, P.; Tantavichet, N. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt-Co catalysts. Rare Metals 2019, 38, 95–106.

    CAS  Google Scholar 

  10. Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

    CAS  Google Scholar 

  11. Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

    CAS  Google Scholar 

  12. Zhang, H. T.; Ding, J.; Chow, G. M. Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 2008, 24, 375–378.

    CAS  Google Scholar 

  13. Shan, A. X.; Chen, Z. C.; Li, B. Q.; Chen, C. P.; Wang, R. M. Monodispersed, ultrathin NiPt hollow nanospheres with tunable diameter and composition via a green chemical synthesis. J. Mater. Chem. A 2015, 3, 1031–1036.

    CAS  Google Scholar 

  14. Shan, A. X.; Cheng, M.; Fan, H. S.; Chen, Z. C.; Wang, R. M.; Chen, C. P. NiPt hollow nanocatalyst: Green synthesis, size control and electrocatalysis. Prog. Nat. Sci. Mater. Int. 2014, 24, 175–178.

    CAS  Google Scholar 

  15. Shan, A. X.; Wu, X.; Lu, J.; Chen, C. P.; Wang, R. M. Phase formations and magnetic properties of single crystal nickel ferrite (NiFe2O4) with different morphologies. CrystEngComm 2015, 17, 1603–1608.

    CAS  Google Scholar 

  16. Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.

    CAS  Google Scholar 

  17. Chiu, C. Y.; Li, Y. J.; Ruan, L. Y.; Ye, X. C.; Murray, C. B.; Huang, Y. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393–399.

    CAS  Google Scholar 

  18. Ding, J. B.; Bu, L. Z.; Guo, S. J.; Zhao, Z. P.; Zhu, E. B.; Huang, Y.; Huang, X. Q. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis. Nano Lett. 2016, 16, 2762–2767.

    CAS  Google Scholar 

  19. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    CAS  Google Scholar 

  20. Kong, F. P.; Ren, Z. H.; Banis, M. N.; Du, L.; Zhou, X.; Chen, G. Y.; Zhang, L.; Li, J. J.; Wang, S. Z.; Li, M. S. et al. Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 2020, 10, 4205–4214.

    CAS  Google Scholar 

  21. Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

    CAS  Google Scholar 

  22. Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

    CAS  Google Scholar 

  23. Jamil, R.; Sohail, M.; Baig, N.; Ansari, M. S.; Ahmed, R. Synthesis of hollow Pt-Ni nanoboxes for highly efficient methanol oxidation. Sci. Rep. 2019, 9, 15273.

    Google Scholar 

  24. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly Crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    CAS  Google Scholar 

  25. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    CAS  Google Scholar 

  26. Lim, B.; Lu, X. M.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. N. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043–4047.

    CAS  Google Scholar 

  27. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    CAS  Google Scholar 

  28. Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt Skin on zigzag-Like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.

    Google Scholar 

  29. Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.

    Google Scholar 

  30. Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

    CAS  Google Scholar 

  31. Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.

    CAS  Google Scholar 

  32. Sun, Y. H.; Zhao, H. F.; Zhou, D.; Zhu, Y. C.; Ye, H. Y.; Moe, Y. A.; Wang, R. M. Direct observation of epitaxial alignment of Au on MoS2 at atomic resolution. Nano Res. 2019, 12, 947–954.

    CAS  Google Scholar 

  33. Asano, M.; Kawamura, R.; Sasakawa, R.; Todoroki, N.; Wadayama, T. Oxygen reduction reaction activity for strain-controlled Pt-based model alloy catalysts: Surface strains and direct electronic effects induced by alloying elements. ACS Catal. 2016, 6, 5285–5289.

    CAS  Google Scholar 

  34. Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Ye, H. Q.; Poppa, H.; Kilaas, R.; Kisielowski, C. Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 2008, 100, 017205.

    CAS  Google Scholar 

  35. Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Acet, M.; Mejia-Rosales, S.; Perez-Tijerina, E.; Yacaman, M. J.; Kisielowski, C. FePt icosahedra with magnetic cores and catalytic shells. J. Phys. Chem. C 2009, 113, 4395–4400.

    CAS  Google Scholar 

  36. Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

    CAS  Google Scholar 

  37. Zou, L. L.; Fan, J.; Zhou, Y.; Wang, C. M.; Li, J.; Zou, Z. Q.; Yang, H. Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res. 2015, 8, 2777–2788.

    CAS  Google Scholar 

  38. Vegard, L. Die konstitution der mischkristalle und die raumfüllung der atome. Z. Physik. 1921, 5, 17–26.

    CAS  Google Scholar 

  39. Teng, X. A.; Shan, A. X.; Zhu, Y. C.; Wang, R. M.; Lau, W. M. Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon. Electrochim. Acta 2020, 353, 136542.

    CAS  Google Scholar 

  40. Tian, X. L.; Wang, L. J.; Deng, P. L.; Chen, Y.; Xia, B. Y. Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. J. Energy Chem. 2017, 26, 1067–1076.

    Google Scholar 

  41. Lim, S. I.; Varón, M.; Ojea-Jiménez, I.; Arbiol, J.; Puntes, V. Exploring the limitations of the use of competing reducers to control the morphology and composition of Pt and PtCo nanocrystals. Chem. Mater. 2010, 22, 4495–4504.

    CAS  Google Scholar 

  42. Chung, D. Y.; Yoo, J. M.; Sung, Y. E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts. Adv. Mater. 2018, 30, 1704123.

    Google Scholar 

  43. Watt, J.; Young, N.; Haigh, S.; Kirkland, A.; Tilley, R. D. Synthesis and structural characterization of branched palladium nanostructures. Adv. Mater. 2009, 21, 2288–2293.

    CAS  Google Scholar 

  44. Watt, J.; Cheong, S.; Toney, M. F.; Ingham, B.; Cookson, J.; Bishop, P. T.; Tilley, R. D. Ultrafast growth of highly branched palladium nanostructures for catalysis. ACS Nano 2010, 4, 396–402.

    CAS  Google Scholar 

  45. Mourdikoudis, S.; Liz-Marzán L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476.

    CAS  Google Scholar 

  46. Hong, X. L.; Li, M.; Bao, N. N.; Peng, E.; Li, W. M.; Xue, J. M.; Ding, J. Synthesis of FeCo nanoparticles from FeO(OH) and Co3O4 using oleic acid as reduction agent. J. Nanopart. Res. 2014, 16, 1935.

    Google Scholar 

  47. Kim, D.; Park, J.; An, K.; Yang, N. K.; Park, J. G.; Hyeon, T. Synthesis of hollow iron nanoframes. J. Am. Chem. Soc. 2007, 129, 5812–5813.

    CAS  Google Scholar 

  48. Yin, X.; Shi, M.; Wu, J. B.; Pan, Y. T.; Gray, D. L.; Bertke, J. A.; Yang, H. Quantitative analysis of different formation modes of platinum nanocrystals controlled by ligand chemistry. Nano Lett. 2017, 17, 6146–6150.

    CAS  Google Scholar 

  49. Yu, Y. S.; Yang, W. W.; Sun, X. L.; Zhu, W. L.; Li, X. Z.; Sellmyer, D. J.; Sun, S. H. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 2014, 14, 2778–2782.

    CAS  Google Scholar 

  50. Lu, S. Q.; Li, H. M.; Sun, J. Y.; Zhuang, Z. B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058–2068.

    CAS  Google Scholar 

  51. Elsherif, S. A.; El Sawy, E. N.; Ghany, N. A. A. Polyol synthesized graphene/PtxNi100−’x nanoparticles alloy for improved electrocatalytic oxidation of methanol in acidic and basic media. J. Electroanal. Chem. 2020, 856, 113601.

    CAS  Google Scholar 

  52. Gong, W. H.; Jiang, Z.; Wu, R. F.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B Environ. 2019, 246, 277–283.

    CAS  Google Scholar 

  53. Yang, L. N.; Song, X. H.; Qi, M. L.; Xia, L. X.; Jin, M. S. Templated high-yield synthesis of Pt nanorods enclosed by high-index {311} facets for methanol selective oxidation. J. Mater. Chem. A 2013, 1, 7316–7320.

    CAS  Google Scholar 

  54. Huang, S. Y.; Shan, A. X.; Wang, R. M. Low Pt alloyed nano-structures for fuel cells catalysts. Catalysts 2018, 8, 538.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFA0703700), the National Natural Science Foundation of China (Nos. 11674008, 11674023, and 51971025), Ministry of Education, China-111 Project (No. B170003), and Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB (No. BK19BE024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chinping Chen, Rongming Wang or Woon-Ming Lau.

Electronic Supplementary Material

12274_2020_2978_MOESM1_ESM.pdf

Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, A., Huang, S., Zhao, H. et al. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 13, 3088–3097 (2020). https://doi.org/10.1007/s12274-020-2978-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2978-3

Keywords

Navigation