Skip to main content

Suspended superconducting weak links from aerosol-synthesized single-walled carbon nanotubes

An Erratum to this article was published on 15 September 2020

This article has been updated

Abstract

We report a new scheme for fabrication of clean, suspended superconducting weak links from pristine single-walled carbon nanotubes (SWCNT). The SWCNTs were grown using the floating-catalyst chemical vapour deposition (FC-CVD) and directly deposited on top of prefabricated superconducting molybdenum-rhenium (MoRe) electrodes by thermophoresis at nearly ambient conditions. Transparent contacts to SWCNTs were obtained by vacuum-annealing the devices at 900 °C, which enabled proximity-induced supercurrents up to 53 nA. SWCNT weak links fabricated on MoRe/palladium bilayer sustained supercurrents up to 0.4 nA after annealing at relatively low temperature of 220 °C. The fabrication process does neither expose SWCNTs to lithographic chemicals, nor the contact electrodes to the harsh conditions of in situ CVD growth. Our scheme facilitates new experimental possibilities for hybrid superconducting devices.

Change history

  • 15 September 2020

    The statement “After publication online first, the author decided to opt for Open Choice and to make the article an Open Access publication.” is not true. The open access decision was done immediately, and we followed the procedures of Springer agreed with Aalto.

  • 15 September 2020

    An Erratum to this paper has been published: https://doi.org/10.1007/s12274-020-3110-4

References

  1. Laird, E. A.; Kuemmeth, F.; Steele, G. A.; Grove-Rasmussen, K.; Nygård, J.; Flensberg, K.; Kouwenhoven, L. P. Quantum transport in carbon nanotubes. Rev. Mod. Phys. 2015, 87, 703–764.

    CAS  Google Scholar 

  2. Sapmaz, S.; Jarillo-Herrero, P.; Blanter, Y. M.; Dekker, C.; Van Der Zant, H. S. J. Tunneling in suspended carbon nanotubes assisted by longitudinal phonons. Phys. Rev. Lett. 2006, 96, 026801.

    CAS  Google Scholar 

  3. Steele, G. A.; Hüttel, A. K.; Witkamp, B.; Poot, M.; Meerwaldt, H. B.; Kouwenhoven, L. P.; Van Der Zant, H. S. J. Strong coupling between single-electron tunneling and nanomechanical motion. Science 2009, 325, 1103–1107.

    CAS  Google Scholar 

  4. Leturcq, R.; Stampfer, C.; Inderbitzin, K.; Durrer, L.; Hierold, C.; Mariani, E.; Schultz, M. G.; Von Oppen, F.; Ensslin, K. Franck–Condon blockade in suspended carbon nanotube quantum dots. Nat. Phys. 2009, 5, 327–331.

    CAS  Google Scholar 

  5. Benyamini, A.; Hamo, A.; Kusminskiy, S. V.; Von Oppen, F.; Ilani, S. Real-space tailoring of the electron-phonon coupling in ultraclean nanotube mechanical resonators. Nat. Phys. 2014, 10, 151–156.

    CAS  Google Scholar 

  6. Chaste, J.; Eichler, A.; Moser, J.; Ceballos, G.; Rurali, R.; Bachtold, A. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 2012, 7, 301–304.

    CAS  Google Scholar 

  7. Häkkinen, P.; Isacsson, A.; Savin, A.; Sulkko, J.; Hakonen, P. Charge sensitivity enhancement via mechanical oscillation in suspended carbon nanotube devices. Nano Lett. 2015, 15, 1667–1672.

    Google Scholar 

  8. Moser, J.; Güttinger, J.; Eichler, A.; Esplandiu, M. J.; Liu, D. E.; Dykman, M. I.; Bachtold, A. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 2013, 8, 493–496.

    CAS  Google Scholar 

  9. Ganzhorn, M.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets. ACS Nano 2013, 7, 6225–6236.

    CAS  Google Scholar 

  10. Cao, J.; Wang, Q.; Dai, H. J. Electron transport in very clean, as-grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745–749.

    CAS  Google Scholar 

  11. Wu, C. C.; Liu, C. H.; Zhong, Z. H. One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics. Nano Lett. 2010, 10, 1032–1036.

    CAS  Google Scholar 

  12. Waissman, J.; Honig, M.; Pecker, S.; Benyamini, A.; Hamo, A.; Ilani, S. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nat. Nanotechnol. 2013, 8, 569–574.

    CAS  Google Scholar 

  13. Muoth, M.; Hierold, C. Transfer of carbon nanotubes onto microactuators for hysteresis-free transistors at low thermal budget. In Proceedings of 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 2012, pp 1352–1355.

  14. Gramich, J.; Baumgartner, A.; Muoth, M.; Hierold, C.; Schönenberger, C. Fork stamping of pristine carbon nanotubes onto ferromagnetic contacts for spin-valve devices. Phys. Status Solidi B 2015, 252, 2496–2502.

    CAS  Google Scholar 

  15. Blien, S.; Steger, P.; Albang, A.; Paradiso, N.; Hüttel, A. K. Quartz tuning-fork based carbon nanotube transfer into quantum device geometries. Phys. Status Solidi B 2018, 255, 1800118.

    Google Scholar 

  16. Pei, F.; Laird, E. A.; Steele, G. A.; Kouwenhoven, L. P. Valley-spin blockade and spin resonance in carbon nanotubes. Nat. Nanotechnol. 2012, 7, 630–634.

    CAS  Google Scholar 

  17. Keijzers, C. J. H. Josephson effects in carbon nanotube mechanical resonators and graphene. Ph.D. Dissertation, Delft University of Technology, Delft, 2012.

    Google Scholar 

  18. Schneider, B. H.; Etaki, S.; Van Der Zant, H. S. J.; Steele, G. A. Coupling carbon nanotube mechanics to a superconducting circuit. Sci. Rep. 2012, 2, 599.

    CAS  Google Scholar 

  19. Lim, J. S.; Lopez, R.; Aguado, R. Josephson current in carbon nanotubes with spin-orbit interaction. Phys. Rev. Lett. 2011, 107, 196801.

    Google Scholar 

  20. Cleuziou, J. P.; Wernsdorfer, W.; Bouchiat, V.; Ondarçuhu, T.; Monthioux, M. Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. 2006, 1, 53–59.

    CAS  Google Scholar 

  21. Cleuziou, J. P.; Wernsdorfer, W.; Bouchiat, V.; Ondarçuhu, T.; Monthioux, M. Carbon nanotube based magnetic flux detector for molecular spintronics. Phys. Status Solidi B 2007, 244, 4351–4355.

    CAS  Google Scholar 

  22. Bouchiat, V. Detection of magnetic moments using a nano-SQUID: Limits of resolution and sensitivity in near-field SQUID magnetometry. Supercond. Sci. Technol. 2009, 22, 064002.

    Google Scholar 

  23. Braunecker, B.; Burset, P.; Yeyati, A. L. Entanglement detection from conductance measurements in carbon nanotube cooper pair splitters. Phys. Rev. Lett. 2013, 111, 136806.

    Google Scholar 

  24. Hels, M. C.; Braunecker, B.; Grove-Rasmussen, K.; Nygård, J. Noncollinear spin-orbit magnetic fields in a carbon nanotube double quantum dot. Phys. Rev. Lett. 2016, 117, 276802.

    CAS  Google Scholar 

  25. Bouchiat, V.; Chtchelkatchev, N.; Feinberg, D.; Lesovik, G. B.; Martin, T.; Torrès, J. Single-walled carbon nanotube–superconductor entangler: Noise correlations and Einstein–Podolsky–Rosen states. Nanotechnology 2003, 14, 77–85.

    CAS  Google Scholar 

  26. Padurariu, C.; Keijzers, C. J. H.; Nazarov, Y. V. Effect of mechanical resonance on josephson dynamics. Phys. Rev. B 2012, 86, 155448.

    Google Scholar 

  27. Khosla, K. E.; Vanner, M. R.; Ares, N.; Laird, E. A. Displacemon electromechanics: How to detect quantum interference in a nano-mechanical resonator. Phys. Rev. X 2018, 8, 021052.

    CAS  Google Scholar 

  28. Lechner, L.; Gaaß, M.; Paila, A.; Sillanpää, M. A.; Strunk, C.; Hakonen, P. J. Microwave reflection measurement of critical currents in a nanotube josephson transistor with a resistive environment. Nanotechnology 2011, 22, 125203.

    Google Scholar 

  29. Ares, N.; Pei, T.; Mavalankar, A.; Mergenthaler, M.; Warner, J. H.; Briggs, G. A. D.; Laird, E. A. Resonant optomechanics with a vibrating carbon nanotube and a radio-frequency cavity. Phys. Rev. Lett. 2016, 117, 170801.

    CAS  Google Scholar 

  30. Laiho, P.; Mustonen, K.; Ohno, Y.; Maruyama, S.; Kauppinen, E. I. Dry and direct deposition of aerosol-synthesized single-walled carbon nanotubes by thermophoresis. ACS Appl. Mater. Interfaces 2017, 9, 20738–20747.

    CAS  Google Scholar 

  31. Wei, N.; Laiho, P.; Khan, A. T.; Hussain, A.; Lyuleeva, A.; Ahmed, S.; Zhang, Q.; Liao, Y. P.; Tian, Y.; Ding, E. X. et al. Fast and ultraclean approach for measuring the transport properties of carbon nanotubes. Adv. Funct. Mater. 2020, 30, 1907150.

    CAS  Google Scholar 

  32. Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A. G. et al. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities. Appl. Phys. Lett. 2015, 107, 013106.

    Google Scholar 

  33. Liang, W. J.; Bockrath, M.; Bozovic, D.; Hafner, J. H.; Tinkham, M.; Park, H. Fabry-Perot interference in a nanotube electron waveguide. Nature 2001, 411, 665–669.

    CAS  Google Scholar 

  34. Jarillo-Herrero, P.; Van Dam, J. A.; Kouwenhoven, L. P. Quantum supercurrent transistors in carbon nanotubes. Nature 2006, 439, 953–956.

    CAS  Google Scholar 

  35. Tsuneta, T.; Lechner, L.; Hakonen, P. J. Gate-controlled superconductivity in a diffusive multiwalled carbon nanotube. Phys. Rev. Lett. 2007, 98, 087002.

    CAS  Google Scholar 

  36. Courtois, H.; Meschke, M.; Peltonen, J. T.; Pekola, J. P. Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 2008, 101, 067002.

    CAS  Google Scholar 

  37. Tinkham, M. Introduction to Superconductivity; 2th ed. McGraw-Hill: New York, 1996.

    Google Scholar 

  38. Joyez, P.; Lafarge, P.; Filipe, A.; Esteve, D.; Devoret, M. H. Observation of parity-induced suppression of Josephson tunneling in the superconducting single electron transistor. Phys. Rev. Lett. 1994, 72, 2458.

    CAS  Google Scholar 

  39. Roschier, L.; Tarkiainen, R.; Ahlskog, M.; Paalanen, M.; Hakonen, P. Multiwalled carbon nanotubes as ultrasensitive electrometers. Appl. Phys. Lett. 2001, 78, 3295–3297.

    CAS  Google Scholar 

  40. Götz, K. J. G.; Blien, S.; Stiller, P. L.; Vavra, O.; Mayer, T.; Huber, T.; Meier, T. N. G.; Kronseder, M.; Strunk, C.; Hüttel, A. K. Co-sputtered MoRe thin films for carbon nanotube growth-compatible superconducting coplanar resonators. Nanotechnology 2016, 27, 135202.

    Google Scholar 

  41. Cao, Q.; Han, S. J.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J. S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72.

    CAS  Google Scholar 

  42. Singh, V.; Schneider, B. H.; Bosman, S. J.; Merkx, E. P. J.; Steele, G. A. Molybdenum-rhenium alloy based high-Q superconducting microwave resonators. Appl. Phys. Lett. 2014, 105, 222601.

    Google Scholar 

  43. Blien, S.; Götz, K. J. G.; Stiller, P. L.; Mayer, T.; Huber, T.; Vavra, O.; Hüttel, A. K. Towards carbon nanotube growth into superconducting microwave resonator geometries. Phys. Status Solidi B 2016, 253, 2385–2390.

    CAS  Google Scholar 

  44. Pop, I. M.; Fournier, T.; Crozes, T.; Lecocq, F.; Matei, I.; Pannetier, B.; Buisson, O.; Guichard, W. Fabrication of stable and reproducible submicron tunnel junctions. J. Vac. Sci. Technol. B 2012, 30, 010607.

    Google Scholar 

  45. Takano, N.; Kai, T.; Shiiki, K.; Terasaki, F. Effect of copious vacancies on magnetims of Pd. Solid State Commun. 1996, 97, 153–156.

    CAS  Google Scholar 

  46. Alexandre, S. S.; Anglada, E.; Soler, J. M.; Yndurain, F. Magnetism of two-dimensional defects in Pd: Stacking faults, twin boundaries, and surfaces. Phys. Rev. B 2006, 74, 054405.

    Google Scholar 

  47. Rodríguez, I.; Valladares, R. M.; Hinojosa-Romero, D.; Valladares, A.; Valladares, A. A. Emergence of magnetism in bulk amorphous palladium. Phys. Rev. B 2019, 100, 024422.

    Google Scholar 

  48. Moruzzi, V. L.; Marcus, P. M. Magnetism in fcc rhodium and palladium. Phys. Rev. B 1989, 39, 471–474.

    CAS  Google Scholar 

  49. Chen, H.; Brener, N. E.; Callaway, J. Electronic structure, optical and magnetic properties of fcc palladium. Phys. Rev. B 1989, 40 (3), 1443–1449.

    CAS  Google Scholar 

  50. Sampedro, B.; Crespo, P.; Hernando, A.; Litrán, R.; López, J. C. S.; Cartes, C. L.; Fernandez, A.; Ramirez, J.; Calbet, J. G.; Vallet, M. Ferromagnetism in fcc twinned 2.4 nm size Pd nanoparticles. Phys. Rev. Lett. 2003, 91, 237203.

    CAS  Google Scholar 

  51. Shinohara, T.; Sato, T.; Taniyama, T. Surface ferromagnetism of Pd fine particles. Phys. Rev. Lett. 2003, 91, 197201.

    CAS  Google Scholar 

  52. Delin, A.; Tosatti, E.; Weht, R. Magnetism in atomic-size palladium contacts and nanowires. Phys. Rev. Lett. 2004, 92, 057201.

    CAS  Google Scholar 

  53. Hong, S. C.; Lee, J. I.; Wu, R. Q. Ferromagnetism in Pd thin films induced by quantum well states. Phys. Rev. B 2007, 75, 172402.

    Google Scholar 

  54. Cleuziou, J. P.; Wernsdorfer, W.; Andergassen, S.; Florens, S.; Bouchiat, V.; Ondarçuhu, T; Monthioux, M. Gate-tuned high frequency response of carbon nanotube Josephson junction. Phys. Rev. Lett. 2007, 99, 117001.

    Google Scholar 

Download references

Acknowledgements

The authors thank Unto Suominen from VTT Technical Research Centre of Finland for help with the MoRe sputtering and Pasi Häkkinen for assistance with the fabrication at the initial stage of this project. This work was supported by the Academy of Finland projects 314448 (BOLOSE) and 312295 (CoE, Quantum Technology Finland) as well as by ERC (grant no. 670743). The research also received partial funding from the European Union Seventh Framework Program FP7 Nanosciences, Nanotechnologies, Materials and new Production Technologies (FP7/2007-2013) under Grant Agreement No. 604472 (IRENA project) and the Aalto Energy Efficiency (AEF) Research Program through the MOPPI project. In addition, the research was partially supported by the Academy of Finland (Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta) via projects 286546 (DEMEC) and 292600 (SUPER), as well as by TEKES Finland via projects 3303/31/2015 (cNT-PV) and 1882/31/2016 (FEDOC). This research project utilized the Aalto University OtaNano/NanoFab and Aalto-NMC facilities, and Low Temperature Laboratory infrastructure, which is part of European Microkelvin Platform. J.-P. K. is grateful for the financial support from Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jukka-Pekka Kaikkonen or Pertti J. Hakonen.

Additional information

Funding note

Open access funding provided by Aalto University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Electronic Supplementary Material

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provided a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaikkonen, JP., Sebastian, A.T., Laiho, P. et al. Suspended superconducting weak links from aerosol-synthesized single-walled carbon nanotubes. Nano Res. 13, 3433–3438 (2020). https://doi.org/10.1007/s12274-020-3032-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3032-1

Keywords

  • carbon nanotube
  • Josephson junction
  • floating catalyst chemical vapour deposition
  • thermophoresis
  • electrical transport