Skip to main content
Log in

Proximity Effect of Magnesium Diboride on Single-Walled Carbon Nanotube: an Ab Initio Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnesium diboride (MgB2) superconductor with excellent physical properties continues to attract the attention of researchers since its discovery. It derives its versatility from the absence of weak links, large coherence length, and small anisotropy. On the other hand, reports of superconductivity in small-diameter single-walled carbon nanotubes (SWCNTs) suspended between superconducting contacts and proximity induced supercurrents in Ta/SWNTs/Au junctions have also aroused great interest in the scientific community. Proximity induced superconductivity in SWCNTs has opened up new frontiers of research which will lead to many novel discoveries. This paper reports ab initio investigations on the proximity effect of MgB2 on the electronic structure of a SWCNT. Condensation of electronic states is observed in the electronic band structure of the pristine SWCNT when MgB2 is held in proximity. An additional band gap is generated below the lowest energy state of the valence band of the pristine CNT which we suggest, is due to Cooper pair formation. This leads to the prediction that SWCNTs will show superconducting properties in proximity of MgB2. We envision MgB2-coated SWCNTs as a novel nanomaterial that has a combination of proximity induced superconductivity and inherently unique mechanical and optical properties of SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)

    Article  ADS  Google Scholar 

  2. Civale, L., Serquis, A.: Vortex matter in the two-band superconductor MgB2. In: MgB2 superconducting Wires: Basics and Applications, pp 1–31 (2016)

  3. Mou, D., Manni, S., Taufour, V., Wu, Y., Huang, L., Bud’ko, S.L., et al.: Isotope effect on electron-phonon interaction in the multiband superconductor MgB2. Phys. Rev. B 93(14), 144504 (2016)

    Article  ADS  Google Scholar 

  4. Ma, Y., Zhang, X., Nishijima, G., Watanabe, K., Awaji, S., Bai, X.: Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route. Appl. Phys. lett. 88(7), 072502 (2006)

    Article  ADS  Google Scholar 

  5. Serrano, G., Serquis, A., Dou, S.X., Soltanian, S., Civale, L, Maiorov, B., et al.: SiC and carbon nanotube distinctive effects on the superconducting properties of bulk MgB2. J. Appl. Phys. 103(2), 023907 (2008)

    Article  ADS  Google Scholar 

  6. Li, W.X., Zeng, R., Lu, L., Dou, S.X.: Effect of thermal strain on Jc and Tc in high density nano-SiC doped MgB2. J. Appl. Phys. 109(7), 07E108 (2011)

    Article  Google Scholar 

  7. Zhang, Y., Zhou, S.H., Lu, C., Konstantinov, K., Dou, S.X.: The effect of carbon doping on the upper critical field (Hc2) and resistivity of MgB2 by using sucrose (C12H22O11) as the carbon source. Supercond. Sci. Technol. 22(1), 015025 (2008)

    Article  ADS  Google Scholar 

  8. Bohnenstiehl, S.D., Susner, M.A., Yang, Y., Collings, E.W., Sumption, M.D., Rindfleisch, M.A., Boone, R.: Carbon doping of MgB2 by toluene and malic-acid-in-toluene. Phys. C: Supercond. 471(3), 108–111 (2011)

    Article  ADS  Google Scholar 

  9. Ağl, H., Çiçek, Ö., Ertekin, E., Motaman, A., Hossain, M.S.A., Dou, S.X., Gencer, A.: Effects of MgO on the electronic and superconducting properties in succinic acid (C4H6O4) doped MgB2 bulks. J. Supercond. Novel Magn. 26(5), 1525–1529 (2013)

    Article  Google Scholar 

  10. Ghorbani, S.R., Darini, M., Wang, X.L., Hossain, M.S.A., Dou, S.X.: Vortex flux pinning mechanism and enhancement of in-field. J c Succinic Acid Doped MgB 2. Solid State Commun. 168, 1–5 (2013)

    Article  Google Scholar 

  11. Tang, Z.K., et al.: Science 292, 2462 (2001)

    Article  ADS  Google Scholar 

  12. Sharma, D., Jaggi, N., Dharamvir, K.: Synthesizing carbon nanotubes inEncyclopedia of nanoscience and nanotechnology. In: Nalwa, H.S. (ed.) . American Scientific Publishers, Los Angeles (2017)

  13. Sharma, D., Jaggi, N.: Vibrational spectra and phonon dispersion analysis of a single-walled zigzag carbon nanotube: a first principles study. Canad. J. Phys. 94(10), 1112–1118 (2016)

    Article  ADS  Google Scholar 

  14. Sharma, D., Jaggi, N.: Static refractive index engineering of a single walled carbon nanotube through co-doping: a theoretical study. Optik-Int. J. Light Electron Opt. 131, 267–272 (2017)

    Article  Google Scholar 

  15. Deepa, S., Jaggi, N.: Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: a first principles study. Phys. E: Low-Dimen. Syst. Nanostruct. 91, 93–100 (2017)

    Article  ADS  Google Scholar 

  16. Jaggi, N., Sharma, D., Sharma, P.: MnO2/PVP/MWCNT hybrid nano composites as electrode materials for high performance supercapacitor. Mater. Res. Express 3(10), 105503 (2016)

    Article  ADS  Google Scholar 

  17. Sharma, D., Jaggi, N.: Effect of co-doping on dielectric function spectra and static refractive indices of singlewalled carbon nanotubes: a first principles study. Canadian Journal of Physics (just accepted) (2017)

  18. Hou, B., Wu, C., Inoue, T., Chiashi, S., Xiang, R., Maruyama, S.: Extended alcohol catalytic chemical vapor deposition for efficient growth of single-walled carbon nanotubes thinner than (6, 5). Carbon 119, 502–510 (2017)

    Article  Google Scholar 

  19. Tonkikh, A.A., Rybkovskiy, D.V., Orekhov, A.S., Chernov, A.I., Khomich, A.A., Ewels, C.P., et al.: Optical properties and charge transfer effects in single-walled carbon nanotubes filled with functionalized adamantane molecules. Carbon 109, 87–97 (2016)

    Article  Google Scholar 

  20. Zheng, B., Xu, J.: Enhanced stress wave attenuation of single-walled carbon nanotube lattice via mass mismatch-induced resonance. Carbon 116, 391–397 (2017)

    Article  Google Scholar 

  21. Chen, Q., Wang, Z., Zheng, Y., Shi, W., Wang, D., Luo, Y.C., et al.: New developments in the growth of 4 Angstrom carbon nanotubes in linear channels of zeolite template. Carbon 76, 401–409 (2014)

    Article  Google Scholar 

  22. Tit, N., Dharma-Wardana, M.W.C.: Superconductivity in carbon nanotubes coupled to transition metal atoms. EPL Europhys. Lett. 62(3), 405 (2003)

    Article  ADS  Google Scholar 

  23. Egger, R., Gogolin, A.O.: Effective low-energy theory for correlated carbon nanotubes. Phys. Rev. Lett. 79(25), 5082 (1997)

    Article  ADS  Google Scholar 

  24. Kane, C., Balents, L., Fisher, M.P.: Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79(25), 5086 (1997)

    Article  ADS  Google Scholar 

  25. Ishii, H., Kataura, H., Shiozawa, H., Yoshioka, H., Otsubo, H., Takayama, Y., et al.: Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426(6966), 540–544 (2003)

    Article  ADS  Google Scholar 

  26. Voit, J.: One-dimensional Fermi liquids. Rep. Prog. Phys. 58(9), 977 (1995)

    Article  ADS  Google Scholar 

  27. Kane, C.L., Fisher, M.P.: Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B 46(23), 15233 (1992)

    Article  ADS  Google Scholar 

  28. Perfetto, E., Stefanucci, G., Cini, M.: On-site repulsion as the source of pairing in carbon nanotubes and intercalated graphite. The Eur. Phys. J. B-Condens. Matter Complex Syst. 30(2), 139–142 (2002)

    Article  Google Scholar 

  29. Bellucci, S., Cini, M., Onorato, P., Perfetto, E.: Suppression of electron–electron repulsion and superconductivity in ultra-small carbon nanotubes. J. Phys.: Condens. Matter 18(33), S2115 (2006)

    ADS  Google Scholar 

  30. Markiewicz, R.S., Giessen, B.G.: Correlation of Tc with structure in the density of states in the new high-Tc superconductors. Phys. C: Supercond. 160(5-6), 497–504 (1989)

    Article  ADS  Google Scholar 

  31. Pattnaik, P.C., Kane, C.L., Newns, D.M., Tsuei, C.C.: Evidence for the van Hove scenario in high-temperature superconductivity from quasiparticle-lifetime broadening. Phys. Rev. B 45(10), 5714 (1992)

    Article  ADS  Google Scholar 

  32. Newns, D.M., Krishnamurthy, H.R., Pattnaik, P.C., Tsuei, C.C., Kane, C.L.: Saddle-point pairing: an electronic mechanism for superconductivity. Phys. Rev. Lett. 69(8), 1264 (1992)

    Article  ADS  Google Scholar 

  33. Margine, E.R., Giustino, F.: Two-gap superconductivity in heavily n-doped graphene: ab initio Migdal-Eliashberg theory. Phys. Rev. B 90(1), 014518 (2014)

    Article  ADS  Google Scholar 

  34. Nandkishore, R., Levitov, L.S., Chubukov, A.V.: Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8(2), 158–163 (2012)

    Article  Google Scholar 

  35. Kasumov, A., Kociak, M., Ferrier, M., Deblock, R., Guéron, S., Reulet, B., et al.: Quantum transport through carbon nanotubes: proximity-induced and intrinsic superconductivity. Phys. Rev. B 68(21), 214521 (2003)

    Article  ADS  Google Scholar 

  36. Morpurgo, A.F., Kong, J., Marcus, C.M., Dai, H.: Gate-controlled superconducting proximity effect in carbon nanotubes. Science 286(5438), 263–265 (1999)

    Article  Google Scholar 

  37. Kasumov, A.Y., Deblock, R., Kociak, M., Reulet, B., Bouchiat, H., Khodos, I.I., et al.: Supercurrents through single-walled carbon nanotubes. Science 284(5419), 1508–1511 (1999)

    Article  ADS  Google Scholar 

  38. Sharma, D., Jaggi, N.: Two-gap superconductivity in niobium carbide-coated single-walled carbon nanotubes: a first-principles study. J. Supercond. Novel Magn. 30(2), 371–377 (2017)

    Article  Google Scholar 

  39. Segall, M.D., Lindan, P.J., Probert, M.A., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14(11), 2717 (2002)

    ADS  Google Scholar 

  40. Materials studio. User’s manual, version 7.0, Accelrys Inc., CA

  41. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  42. Hirshfeld, F.L.: Bonded-atom fragments for describing molecular charge densities. Theor. Chem. Accounts: Theory Comput. Model. (Theor. Chim. Acta) 44(2), 129–138 (1977)

    Article  Google Scholar 

  43. Mulliken, R.S.: Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 23 (10), 1833–1840 (1955)

    Article  ADS  Google Scholar 

  44. Choi, H.J., Roundy, D., Sun, H., Cohen, M.L., Louie, S.G.: The origin of the anomalous superconducting properties of MgB2. Nature 418(6899), 758 (2002)

    Article  ADS  Google Scholar 

  45. Chen, K., Dai, W., Zhuang, C.G., Li, Q., Carabello, S., Lambert, J.G., Xi, X.X.: Momentum-dependent multiple gaps in magnesium diboride probed by electron tunnelling spectroscopy. Nat. Commun. 3, 619 (2012)

    Article  Google Scholar 

  46. Wei, J.Y.T., Yeh, N.C., Garrigus, D.F., Strasik, M.: Directional tunneling and Andreev reflection on YBa 2 Cu 3 O 7 − δ single crystals: predominance of d-wave pairing symmetry verified with the generalized Blonder, Tinkham, and Klapwijk theory. Phys. Rev. Lett. 81(12), 2542 (1998)

    Article  ADS  Google Scholar 

  47. Kamide, K., Kimura, T., Nishida, M., Kurihara, S.: Singlet superconductivity phase in carbon nanotubes. Phys. Rev. B 68(2), 024506 (2003)

    Article  ADS  Google Scholar 

  48. Barnett, R., Demler, E., Kaxiras, E.: Electron-phonon interaction in ultrasmall-radius carbon nanotubes. Phys. Rev. B 71(3), 035429 (2005)

    Article  ADS  Google Scholar 

  49. Connétable, D., Rignanese, G.M., Charlier, J.C., Blase, X.: Room temperature Peierls distortion in small diameter nanotubes. Phys. Rev. Lett. 94(1), 015503 (2005)

    Article  ADS  Google Scholar 

  50. Krstić, V., Roth, S., Burghard, M., Weis, J., Kern, K.: Suppression of superconductor quasiparticle tunneling into single-walled carbon nanotubes. Phys. Rev. B 68(20), 205402 (2003)

    Article  ADS  Google Scholar 

  51. Buitelaar, M.R., Belzig, W., Nussbaumer, T., Babić, B., Bruder, C., Schönenberger, C.: Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 91(5), 057005 (2003)

    Article  ADS  Google Scholar 

  52. Glazman, L.I., Matveev, K.A.: Resonant Josephson current through Kondo impurities in a tunnel barrier. JETP Lett 49(10), 659–662 (1989)

    ADS  Google Scholar 

  53. Grove-Rasmussen, K., Jørgensen, H.I., Lindelof, P.E.: Kondo resonance enhanced supercurrent in single wall carbon nanotube Josephson junctions. J. Phys. 9(5), 124 (2007)

    Google Scholar 

  54. Zhao, G.M., Quasi-one-dimensional superconductivity above 300 K and quantum phase slips in individual carbon nanotubes. (2002) arXiv:cond-mat/0208198

  55. Fazio, R., Hekking, F.W., Odintsov, A.A., Raimondi, R.: Properties of superconductor–Luttinger-liquid hybrid systems. Superlattice. Microst. 25(5-6), 1163–1175 (1999)

    Article  ADS  Google Scholar 

  56. Maslov, D.L., Stone, M., Goldbart, P.M., Loss, D.: Josephson current and proximity effect in Luttinger liquids. Phys. Rev. B 53(3), 1548 (1996)

    Article  ADS  Google Scholar 

  57. Loss, D., Martin, T.: Wentzel-Bardeen singularity and phase diagram for interacting electrons coupled to acoustic phonons in one dimension. Phys. Rev. B 50(16), 12160 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Author Deepa Sharma would like to acknowledge the support of University Grants Commission of India for the grant of UGC faculty Fellowship [F. No. 8-2(162)/2011(MRP/NRCB)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Jaggi, N. Proximity Effect of Magnesium Diboride on Single-Walled Carbon Nanotube: an Ab Initio Study. J Supercond Nov Magn 31, 1035–1042 (2018). https://doi.org/10.1007/s10948-017-4298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4298-8

Keywords

Navigation