Skip to main content

Advertisement

Log in

Convective self-assembled processed multiwall carbon nanotube thin films for semi-transparent microelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A self-assembled convective setup was utilized to manufacture multiwall carbon nanotube (MWCNTs) thin films at room temperature on glass substrates. The extracted X-ray diffraction patterns revealed that the manufactured MWCNTs films have a crystal structure with observed peaks at 2θ = 26.61°, 43.45°, and 53.1°, and are related to the (002), (101) and (004) planes, respectively, confined to graphite of a hexagonal structure. The Raman spectroscopic behavior of the samples was investigated, and the intensity of the D:G band ratio was utilized to estimate the crystallinity degree of carbon in the MWCNTs samples (~ 0.81). The SEM images of the films showed that the topographical properties of the films are retained and densely packed, confirming a network distribution. Briefly, the films are significantly influenced to have a rod-like shape of the MWCNTs. The analyzed HR-TEM images of the films have a uniform structure with cylindrical-shaped MWCNTs. When the energy of the probe waves was  ~ 3.95 eV, the reflected and transmitted probe wave vanished. The fabricated MWCNTs films may play an essential role as a real absorber with an absorption coefficient α(hυ = 3.5 eV) ≈ 5.36 × 105 cm−1. The manufactured MWCNTs films are found to support the interpretation of a direct bandgap; the evaluated energy gap is \({E}_{g}^{OPT}\) =3.748 eV as a result of the carbon atoms impurities; and a direct transition at low energy is estimated by \({E}_{g}^{Onset}=0.59 \mathrm{e}\mathrm{V}\). The performance of the fabricated films is predicted and analyzed by the complex parameters: dispersion, n*, optical dielectric, ε*, and optical conductivity, σ*. The manufactured MWCNTs provide a pathway to fabricate a broadband stable behavioral absorptive layer for photovoltaic devices and optical switching optoelectronics (at low reflectance and transmittance with high absorbance).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Pumera, The electrochemistry of carbon nanotubes: fundamentals and applications. Chemistry (2007). https://doi.org/10.1002/chem.200900421

    Article  Google Scholar 

  2. M.A. Basit, M.S.U. Malik, G.U. Rehman, F.S. Awan, L.A. Khan, T. Subhani, Incorporation of carbon nanotubes on strategically de-sized carbon fibers for enhanced interlaminar shear strength of epoxy matrix composites. J. Chem. Soc. Pak. 41, 655 (2019)

    Google Scholar 

  3. J. Robertson, Realistic applications of CNTs. Mater. Today 7(10), 46–52 (2004)

    Article  CAS  Google Scholar 

  4. P. Merel, J.B.A. Kpetsu, C. Koechlin, S. Maine, R. Haidar, J.L. Pelouard, A. Sarkissian, M.I. Ionescu, X. Sun, P. Laou, S. Paradis, Infrared sensors based on multi-wall carbon nanotube films. Comptes Rendus Phys. 11, 375–380 (2010)

    Article  CAS  Google Scholar 

  5. Á. Kukovecz, R. Smajda, M. Oze, H. Haspel, Z. Kónya, I. Kiricsi, Pyroelectric temperature sensitization of multi-wall carbon nanotube papers. Carbon 46, 1262–1265 (2008)

    Article  CAS  Google Scholar 

  6. J.H. Lehman, K.E. Hurst, A.M. Radojevic, A.C. Dillon, R.M. Osgood Jr., Multiwall carbon nanotube absorber on a thin-film lithium niobate pyroelectric detector. Opt. Lett. 32, 772–774 (2007)

    Article  CAS  Google Scholar 

  7. G. Bieszczad, M. Kastek, Measurement of thermal behavior of detector array surface with the use of microscopic thermal camera. Metrol. Meas. Syst. 18, 679–690 (2011)

    Article  Google Scholar 

  8. J. Lehman, C. Yung, N. Tomlin, D. Conklin, M. Stephens, Carbon nanotube-based black coatings. Appl. Phys. Rev. 5, 011103 (2018)

    Article  Google Scholar 

  9. F. Wang, D. Kozawa, Y. Miyauchi, K. Hiraoka, S. Mouri, Y. Ohno, K. Matsuda, Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat. Commun. 6, 6305 (2015). https://doi.org/10.1038/ncomms7305

    Article  CAS  Google Scholar 

  10. R. Zhang, Y. Zhang, F. Wei, Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 46, 3661 (2017)

    Article  CAS  Google Scholar 

  11. J. Lehman, A. Sanders, Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate. Nano Lett. 10, 3261–3266 (2010). https://doi.org/10.1021/nl100582j

    Article  CAS  Google Scholar 

  12. O. Pitkänen, T. Järvinen, H. Cheng, G.S. Lorite, A. Dombovari, L. Rieppo, S. Talapatra, H.M. Duong, G. Tóth, K.L. Juhász, Z. Kónya, A. Kukovecz, P.M. Ajayan, R. Vajtai, K. Kordás, Sci. Rep. 7, 16594 (2017). https://doi.org/10.1038/s41598-017-16604-x

    Article  CAS  Google Scholar 

  13. Y. Meng, X.B. Xu, H. Li, Y. Wang, E.X. Ding, Z.C. Zhang, H.Z. Geng, Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon 70, 103–110 (2014).

    Article  CAS  Google Scholar 

  14. Yu LePing, C. Shearer, J. Shapter, Recent development of carbon nanotube transparent conductive films. Chem. Rev. 116, 13413–13453 (2016)

    Article  Google Scholar 

  15. N. Imazu, T. Fujigaya, N. Nakashima, Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes. Sci. Technol. Adv. Mater. 15, 025005 (2014)

    Article  Google Scholar 

  16. A. Venkataraman, E.V. Amadi, Y. Chen, C. Papadopoulos, Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett. 14, 220 (2019)

    Article  Google Scholar 

  17. T. Kitano, Y. Maeda, T. Akasaka, Preparation of transparent and conductive thin films of carbon nanotubes using a spreading/coating technique. Carbon 47, 3559–3565 (2009)

    Article  CAS  Google Scholar 

  18. N.T. Dinh, E. Sowade, T. Blaudeck, S. Hermann, R.D. Rodriguez, D.R. Zahn, S.E. Schulz, R.R. Baumann, O. Kanoun, High-resolution inkjet printing of conductive carbon nanotube twin lines utilizing evaporation-driven self-assembly. Carbon 96, 382–393 (2016)

    Article  CAS  Google Scholar 

  19. Y. Zhou, R. Azumi, Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci. Technol. Adv. Mater. 17, 493–516 (2016)

    Article  CAS  Google Scholar 

  20. K.-U. Jan, Transparent MWCNT thin films fabricated by using the spray method. J. Korean Inst. Electr. Electron. Mater. Eng. 23, 338 (2010)

    Google Scholar 

  21. M. Farbod, A. Zilaie, I. Kazeminezhad, Carbon nanotubes length optimization for preparation of improved transparent and conducting thin film substrates. J. Sci. 2, 99–104 (2017)

    Google Scholar 

  22. C. Farcau, N.M. Sangeetha, H. Moreira, B. Viallet, J. Grisolia, D. Ciuculescu-Pradines, L. Ressier, High-sensitivity strain gauge based on a single wire of gold nanoparticles fabricated by stop-and-go convective self-assembly. ACS Nano 5(9), 7137–7143 (2011). https://doi.org/10.1021/nn201833y

    Article  CAS  Google Scholar 

  23. A.M. Nawar, A. El-Mahalawy, M, Simple processed semi-transparent Schottky diode based on PMMA-MWCNTs nanocomposite for new generation of optoelectronics. Synth. Metals 255, 116102 (2019)

    Article  CAS  Google Scholar 

  24. A.M. Nawar, M.M. Makhlouf, Bi-functional platform for non-volatile memory and photoconductive Schottky devices based on multi-walled carbon nanotubes: Rhodamine B/silicon hybrid heterostructure. Physica E 113, 54–64 (2019)

    Article  CAS  Google Scholar 

  25. M.M. El-Nahass, H.A. El-Khalek, A.M. Nawar, Topological, morphological and optical properties of Gamma irradiated Ni (II) tetraphenyl porphyrin thin films. J. Opt. Commun. 285, 1872–1881 (2012)

    Article  CAS  Google Scholar 

  26. R. Tsu, W.E. Howard, L. Esaki, Phys. Rev. 172, 779 (1968)

    Article  CAS  Google Scholar 

  27. A.M. Nawar, I.S. Yahia, Fabrication and characterization of anthracene thin films for wide scale organic optoelectronic applications based on linear/nonlinear analyzed optical dispersion parameters. Opt. Mater. 70, 1–10 (2017)

    Article  CAS  Google Scholar 

  28. A.M. Nawar, Fast processed crystalline methyl violet-6B thin films for optimizing the light-harvesting characteristics of Ag/methyl violet 6B/p-Si/Al solar cells. Appl. Phys. A 125, 210 (2019)

    Article  CAS  Google Scholar 

  29. K. Kamarás, Á. Pekker, M. Bruckner, F. Borondics, A.G. Rinzler, D.B. Tanner, M.E. Itkis, R.C. Haddon, Y. Tan, D.E. Resasco, Wide-range optical spectra of carbon nanotubes: a comparative study. Phys. Status Solidi 245(10), 2229–2232 (2008). https://doi.org/10.1002/pssb.200879647

    Article  CAS  Google Scholar 

  30. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49, 2581–2602 (2011)

    Article  CAS  Google Scholar 

  31. M. Younas, M.A. Gondal, M.A. Dastageera, K. Harrabi, Efficient and cost-effective dye-sensitized solar cells using MWCNT-TiO2 nanocomposite as photoanode and MWCNT as Pt-free counter electrode. Sol. Energy 188, 1178–1188 (2019)

    Article  CAS  Google Scholar 

  32. H.A. Maddah, V. Berry, S.K. Behura, Biomolecular photosensitizers for dye-sensitized solar cells: recent developments and critical insights. Renew. Sustain. Energy Rev. 121, 109678 (2020)

    Article  CAS  Google Scholar 

  33. F. Abeles, M.L. Theye, Surf. Sci. 5, 325 (1966)

    Article  CAS  Google Scholar 

  34. I. Konstantinov, T. Babeva, S. Kitova, Appl. Opt. 37(19), 4260 (1998)

    Article  CAS  Google Scholar 

  35. O.S. Heavens, in Physics of Thin Films, ed. by G. Hass, R. Thus (Academic, New York, 1964), p. 193

    Google Scholar 

  36. M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys. 1, 89–108 (2010)

    Article  CAS  Google Scholar 

  37. S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)

    Article  CAS  Google Scholar 

  38. L. Bokobza, J. Bruneel, M. Couzi, Chem. Phys. Lett. 590, 153–159 (2013)

    Article  CAS  Google Scholar 

  39. R.A. DiLeo, B.J. Landi, R.P. Raffaelle, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2712152

    Article  Google Scholar 

  40. K.K. Kim, J.S. Park, S.J. Kim, H.Z. Geng, K.H. An, C.-M. Yang, Dependence of Raman spectra G' band intensity on metallicity of single-wall carbon nanotubes. Phys. Rev. B (2007). https://doi.org/10.1103/PhysRevB.76.205426

    Article  Google Scholar 

  41. P. Mahanandia, P.N. Vishwakarma, K.K. Nanda, V. Prasad, S.V. Subramanyam, S.K. Dev, P.V. Satyam, Multiwall carbon nanotubes from pyrolysis of tetrahydrofuran. Mater. Res. Bull. 41, 2311–2317 (2006)

    Article  CAS  Google Scholar 

  42. A. Abouelsayed, W.H. Eisa, M. Dawy, A. Shabaka, Ultraviolet and infrared studies of the single-walled and multi-walled carbon nanotube films with different thickness. Phys. B 483, 8–12 (2016)

    Article  CAS  Google Scholar 

  43. Á. Pekker, F. Borondics, K. Kamarás, A.G. Rinzler, D.B. Tanner, Phys. Stat. Sol. (B) 243, 3485 (2006)

    Article  CAS  Google Scholar 

  44. J. Bardeen, F. J. Blatt, L. H. Hall, Proceedings of the Photoconductivity Conference held at Atlantic City, ed. R. G. Breckenridge, B. R. Russell, E. E. Hahn (John Wiley, New York, 1956), p. 146.

  45. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. J. Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  46. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. J. Phys. Rev. B 7, 3767 (1973)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P. 2/65/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Nawar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawar, A.M., Yahia, I.S. & Al-Kotb, M.S. Convective self-assembled processed multiwall carbon nanotube thin films for semi-transparent microelectronic applications. J Mater Sci: Mater Electron 31, 12127–12136 (2020). https://doi.org/10.1007/s10854-020-03759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03759-z

Navigation