Skip to main content
Log in

A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerators (TENGs) have been developed rapidly into an efficient wind energy collection equipment. Reducing the friction wear and energy loss in breeze energy collection is a research direction worthy of attention. Herein, a flutter-effect-based triboelectric nanogenerator (FE-TENG) is designed to collect the breeze energy at low wind speed from arbitrary directions. Distinguishing from previous wind-driven TENGs, the wind-driven part of this device is separated from the TENG units, which not only avoids the wear of friction layers caused by direct wind contact but also reduces the energy loss, therefore, relatively stable electric outputs are obtained with VOC ~ 281 V, ISC ~ 13.4 μA, QSC ~ 143 nC, and output power ~ 4 mW at the wind speed of 4.5 m/s, respectively. In addition, a real-time wind speed monitoring system based on LabVIEW software with high sensitivity and fast response to wind is achieved relying on the excellent linear relationship between wind speed and electrical output signal. Furthermore, it has been successfully applied as power sources for portable electronics, about 170 commercial light-emitting devices (LEDs) are lighted and a digital watch is successfully driven at the wind speed of 2.9 m/s. This work not only provides a new structure and idea for the future collection of clean and sustainable breeze energy from arbitrary directions but also has great potential in the field of self-powered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann, T.; Söder, L. Wind energy technology and current status: A review. Renew. Sustain. Energy Rev. 2000, 4, 315–374.

    Article  CAS  Google Scholar 

  2. Abbey, C.; Joos, G. Supercapacitor energy storage for wind energy applications. IEEE Trans. Ind. Appl. 2007, 43, 769–776.

    Article  Google Scholar 

  3. Kaldellis, J. K.; Zafirakis, D. The wind energy (r)evolution: A short review of a long history. Renew. Energy2011, 36, 1887–1901.

    Article  Google Scholar 

  4. Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

    Article  CAS  Google Scholar 

  5. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature2012, 488, 294–303.

    Article  CAS  Google Scholar 

  6. Tuller, S. E.; Brett, A. C. The characteristics of wind velocity that favor the fitting of a Weibull distribution in wind speed analysis. J. Climate Appl. Meteor. 1984, 23, 124–134.

    Article  Google Scholar 

  7. Wagner, S.; Bareiß, R.; Guidati, G. Wind Turbine Noise; Springer: Berlin, Heidelberg, 1996.

    Book  Google Scholar 

  8. Kammen, D. M.; Sunter, D. A. City-integrated renewable energy for urban sustainability. Science2016, 352, 922–928.

    Article  CAS  Google Scholar 

  9. Harding, G.; Harding, P.; Wilkins, A. Wind turbines, flicker, and photosensitive epilepsy: Characterizing the flashing that may precipitate seizures and optimizing guidelines to prevent them. Epilepsia2008, 49, 1095–1098.

    Article  Google Scholar 

  10. Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073.

    Article  CAS  Google Scholar 

  11. He, X. M.; Mu, X. J.; Wen, Q.; Wen, Z. Y.; Yang, J.; Hu, C. G.; Shi, H. F. Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 2016, 9, 3714–3724.

    Article  CAS  Google Scholar 

  12. Liu, J. M.; Cui, N. Y.; Gu, L.; Chen, X. B.; Bai, S.; Zheng, Y. B.; Hu, C. X.; Qin, Y. A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment. Nanoscale2016, 8, 4938- 4944.

    Article  CAS  Google Scholar 

  13. Liu, G. L.; Chen, J.; Guo, H. Y.; Lai, M. H.; Pu, X. J.; Wang, X.; Hu, C. G. Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion. Nano Res. 2018, 11, 633–641.

    Article  CAS  Google Scholar 

  14. Yang, H. M.; Wang, M. F.; Deng, M. M.; Guo, H. Y.; Zhang, W.; Yang, H. K.; Xi, Y.; Li, X. G.; Hu, C. G.; Wang, Z. L. A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy2019, 56, 300–306.

    Article  CAS  Google Scholar 

  15. Cao, R.; Zhou, T.; Wang, B.; Yin, Y. Y.; Yuan, Z. Q.; Li, C. J.; Wang, Z. L. Rotating-sleeve triboelectric-electromagnetic hybrid nanogenerator for high efficiency of harvesting mechanical energy. ACS Nano2017, 11, 8370–8378.

    Article  CAS  Google Scholar 

  16. Wang, J. Y.; Ding, W. B.; Pan, L.; Wu, C. S.; Yu, H.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano2018, 12, 3954–3963.

    Article  CAS  Google Scholar 

  17. Ahmed, A.; Hassan, I.; Hedaya, M.; Abo El-Yazid, T.; Zu, J.; Wang, Z. L. Farms of triboelectric nanogenerators for harvesting wind energy: A potential approach towards green energy. Nano Energy2017, 36, 21–29.

    Article  CAS  Google Scholar 

  18. Chen, S. W.; Gao, C. Z.; Tang, W.; Zhu, H. R.; Han, Y.; Jiang, Q. W.; Li, T.; Cao, X.; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy2015, 14, 217–225.

    Article  CAS  Google Scholar 

  19. Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano2013, 7, 7119–7125.

    Article  CAS  Google Scholar 

  20. Argentina, M.; Mahadevan, L. Fluid-flow-induced flutter of a flag. Proc. Natl. Acad. Sci. USA2005, 102, 1829–1834.

    CAS  Google Scholar 

  21. Carruthers, A.; Filippone, A. Aerodynamic drag of streamers and flags. J. Aircr. 2005, 42, 976–982.

    Article  Google Scholar 

  22. Watanabe, Y.; Isogai, K.; Suzuki, S.; Sugihara, M. A theoretical study of paper flutter. J. Fluids Struct. 2002, 16, 543–560.

    Article  Google Scholar 

  23. Theodorsen, T. General Theory of Aerodynamic Instability and the Mechanism of Flutter; NACA: Langley Field, VA, USA, 1935.

    Google Scholar 

  24. Theodorsen, T.; Garrick, I. E. Mechanism of Flutter a Theoretical and Experimental Investigation of the Flutter Problem; NACA: Langley Field, VA, USA, 1940.

    Google Scholar 

  25. Quan, Z. C.; Han, C. B.; Jiang, T.; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.

    Article  CAS  Google Scholar 

  26. Zhang, L.; Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Tang, J. F.; Zhang, H. T.; Pan, H.; Zhu, M. H.; Yang, W. Q. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650–1656.

    Article  CAS  Google Scholar 

  27. Bae, J.; Lee, J.; Kim, S.; Ha, J.; Lee, B. S.; Park, Y. J.; Choong, C.; Kim, J. B.; Wang, Z. L.; Kim, H. Y. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 2014, 5, 4929.

  28. Wang, S. H.; Mu, X. J.; Wang, X.; Gu, A. Y.; Wang, Z. L.; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano2015, 9, 9554–9563.

    Article  CAS  Google Scholar 

  29. Guo, H. Y.; He, X. M.; Zhong, J. W.; Zhong, Q. Z.; Leng, Q.; Hu, C. G.; Chen, J.; Tian, L.; Xi, Y.; Zhou, J. A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A2014, 2, 2079–2087.

    Article  CAS  Google Scholar 

  30. Zhao, Z. F.; Pu, X.; Du, C. H.; Li, L. X.; Jiang, C. Y.; Hu, W. G.; Wang, Z. L. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano2016, 10, 1780–1787.

    Article  CAS  Google Scholar 

  31. Yang, Y.; Zhu, G.; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. H.; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano2013, 7, 9461–9468.

    Article  CAS  Google Scholar 

  32. Diaz, A. F.; Felix-Navarro, R. M. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 2004, 62, 277–290.

    Article  CAS  Google Scholar 

  33. Davies, D. K. Charge generation on dielectric surfaces. J. Phys. D: Appl. Phys. 1969, 2, 1533–1537.

    Article  Google Scholar 

  34. Sun, J.; Li, W.; Liu, G. X.; Li, W. J.; Chen, M. F. Triboelectric nano-generator based on biocompatible polymer materials. J. Phys. Chem. C2015, 119, 9061–9068.

    Article  CAS  Google Scholar 

  35. Wang, F. X.; Hou, Q. M.; Bo, J. L.; Pan, J. Study on control system of low speed PM generator direct driven by wind turbine. In Proceedings of 2005 International Conference on Electrical Machines and Systems, Nanjing, China, 2005; pp 1009–1012.

    Google Scholar 

  36. Zhang, K. W.; Yang, Y. Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 2016, 9, 974–984.

    Article  Google Scholar 

  37. He, C.; Zhu, W. J.; Gu, G. Q.; Jiang, T.; Xu, L.; Chen, B. D.; Han, C. B.; Li, D. C.; Wang, Z. L. Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res. 2018, 11, 1157–1164.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2016YFA0202704), the National Natural Science Foundation of China (Nos. 51772036 and 51572040), the Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0068) the Fundamental Research Funds for the Central Universities (Nos. CYFH201821 and CYFH201822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xi.

Electronic Supplementary Material

Supplementary material, approximately 36.4 MB.

Supplementary material, approximately 19.1 MB.

Supplementary material, approximately 29.9 MB.

12274_2019_2545_MOESM4_ESM.pdf

A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Pu, X., Yang, H. et al. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 12, 3018–3023 (2019). https://doi.org/10.1007/s12274-019-2545-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2545-y

Keywords

Navigation