Skip to main content
Log in

Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The triboelectric nanogenerator has attracted global attention since it was proposed in 2012; the exploration of new applications is ongoing with much enthusiasm in this field. In this paper, we present a novel triboelectric nanogenerator based on magnetically induced retractable spring steel tapes (MR-TENG) to develop energy harvesting from large amplitude periodic motion, which is an ingenious design that employs a new material. The tape-like structural design ensures that the contact/separate direction of the friction layers is perpendicular to the direction of the external force, breaking the amplitude limitation of previous nanogenerators with vertical contact/separate motion. Combined with flexible spring steel tapes, this design enables portability thus widening its application. The working mechanism and factors that may affect the output performance are systematically studied. The results show that the maximum short-circuit current, open-circuit voltage and instantaneous power are 21 μA, 342 V, and 1.8 mW, respectively. Moreover, we also demonstrate the great potential of the MR-TENG to serve as a self-powered displacement sensor and portable emergency power supply. This work greatly widens the applications of triboelectric nanogenerators (TENGs) through new material selection and innovative structural design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grätzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841–6851.

    Article  Google Scholar 

  2. Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798–801.

    Article  Google Scholar 

  3. Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. Predicting the opencircuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater. 2015, 5, 1400812.

    Article  Google Scholar 

  4. Hossain, M. F.; Zhang, Z. H.; Takahashi, T. Novel micro-ring structured ZnO photoelectrode for dye-sensitized solar cell. Nano-Micro Lett. 2010, 2, 53–55.

    Article  Google Scholar 

  5. Zhu, T. J.; Fu, C. G.; Xie, H. H.; Liu, Y. T.; Zhao, X. B. High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv. Energy Mater. 2015, 5, 1500588.

    Article  Google Scholar 

  6. Huang, H. H.; Cui, Y.; Li, Q.; Dun, C. C.; Zhou, W.; Huang, W. X.; Chen, L.; Hewitt, C. A.; Carroll, D. L. Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 2016, 26, 172–179.

    Article  Google Scholar 

  7. Lee, J. A.; Aliev, A. E.; Bykova, J. S.; de Andrade, M. J.; Kim, D.; Sim, H. J.; Lepró, X.; Zakhidov, A. A.; Lee, J. B.; Spinks, G. M. et al. Woven-yarn thermoelectric textiles. Adv. Mater. 2016, 28, 5038–5044.

    Article  Google Scholar 

  8. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  Google Scholar 

  9. Hu, Y. F.; Wang, Z. L. Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 2015, 14, 3–14.

    Article  Google Scholar 

  10. Chen, X. Y.; Pu, X, Jiang, T.; Yu, A. F.; Xu, L.; Wang, Z. L. Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer. Adv. Funct. Mater. 2017, 27, 1603788.

    Article  Google Scholar 

  11. Chen, X. Y.; Jiang, T.; Yao, Y. Y.; Xu, L.; Zhao, Z. F.; Wang, Z. L. Stimulating acrylic elastomers by a triboelectric nanogenerator—toward self-powered electronic skin and artificial muscle. Adv. Funct. Mater. 2016, 26, 4906–4913.

    Article  Google Scholar 

  12. Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M. Electronic paper: Flexible active-matrix electronic ink display. Nature 2003, 423, 136.

    Article  Google Scholar 

  13. Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507–511.

    Article  Google Scholar 

  14. Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. N. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6038.

    Article  Google Scholar 

  15. Burns, S. E.; Reynolds, K.; Reeves, W.; Banach, M.; Brown, T.; Chalmers, K.; Cousins, N.; Etchells, M.; Hayton, C.; Jacobs, K. et al. A scalable manufacturing process for flexible activematrix e-paper displays. J. Soc. Inf. Disp. 2005, 13, 583–586.

    Article  Google Scholar 

  16. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  Google Scholar 

  17. Zhong, J. W.; Zhang, Y.; Zhong, Q. Z.; Hu, Q. Y.; Hu, B.; Wang, Z. L.; Zhou, J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 2014, 8, 6273–6280.

    Article  Google Scholar 

  18. Zhang, H. L.; Yang, Y.; Hou, T. C.; Su, Y. J.; Hu, C. G.; Wang, Z. L. Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy 2013, 2, 1019–1024.

    Article  Google Scholar 

  19. Quan, T.; Wang, X.; Wang, Z. L.; Yang, Y. Hybridized electromagnetic-triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 2015, 9, 12301–12310.

    Article  Google Scholar 

  20. Tang, W.; Tian, J. J.; Zheng, Q.; Yan, L.; Wang, J. X.; Li, Z.; Wang, Z. L. Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation. ACS Nano 2015, 9, 7867–7873.

    Article  Google Scholar 

  21. Weiss, P. S. A conversation with Prof. Zhong Lin Wang, energy harvester. ACS Nano 2015, 9, 2221–2226.

    Article  Google Scholar 

  22. Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

    Article  Google Scholar 

  23. Xia, X. N.; Chen, J.; Guo, H. Y.; Liu, G. L.; Wei, D. P.; Xi, Y.; Wang, X.; Hu, C. G. Embedding variable microcapacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Res. 2017, 10, 320–330.

    Article  Google Scholar 

  24. Liu, G. L.; Guo, H. Y.; Chen, L.; Wang, X.; Wei, D. P.; Hu, C. G. Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization. Nano Res. 2016, 9, 3355–3363.

    Article  Google Scholar 

  25. Lee, K. Y.; Chun, J.; Lee, J. H.; Kim, K. N.; Kang, N. R.; Kim, J. Y.; Kim, M. H.; Shin, K. S.; Gupta, M. K.; Baik, J. M. et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 2014, 26, 5037–5042.

    Article  Google Scholar 

  26. He, X. M.; Mu, X. J.; Wen, Q.; Wen, Z. Y.; Yang, J.; Hu, C. G.; Shi, H. F. Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 2016, 9, 3714–3724.

    Article  Google Scholar 

  27. Quan, T.; Wu, Y. C.; Yang, Y. Hybrid electromagnetictriboelectric nanogenerator for harvesting vibration energy. Nano Res. 2015, 8, 3272–3280.

    Article  Google Scholar 

  28. Wang, X. D.; Gao, Y. F.; Wei, Y. G.; Wang, Z. L. Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res. 2009, 2, 177–182.

    Article  Google Scholar 

  29. Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

    Article  Google Scholar 

  30. Bai, P.; Zhu, G.; Liu, Y.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Ma, J. S.; Zhang, G.; Wang, Z. L. Cylindrical rotating triboelectric nanogenerator. ACS Nano 2013, 7, 6361–6366.

    Article  Google Scholar 

  31. Guo, H. Y.; Leng, Q.; He, X. M.; Wang, M. J.; Chen, J.; Hu, C. G.; Xi, Y. A triboelectric generator based on checkerlike interdigital electrodes with a sandwiched pet thin film for harvesting sliding energy in all directions. Adv. Energy Mater. 2015, 5, 1400790.

    Article  Google Scholar 

  32. Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Cao, S. Y.; Zheng, X.; Si, H. N.; Lu, S. N.; Zhang, Y. Multi-unit hydroelectric generator based on contact electrification and its service behavior. Nano Energy 2015, 16, 329–338.

    Article  Google Scholar 

  33. Das, P. S.; Park, J. Y. Human skin based flexible triboelectric nanogenerator using conductive elastomer and fabric films. Electron. Lett. 2016, 52, 1885–1887.

    Article  Google Scholar 

  34. Zhang, H. L.; Yang, Y.; Su, Y. J.; Chen, J.; Adams, K.; Lee, S.; Hu, C. G.; Wang, Z. L. Triboelectric nanogenerator for harvesting vibration energy in full space and as selfpowered acceleration sensor. Adv. Funct. Mater. 2014, 24, 1401–1407.

    Article  Google Scholar 

  35. Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Yang, J.; Wu, Z. Y.; Wang, Z. L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 2014, 26, 6599–6607.

    Article  Google Scholar 

  36. Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

    Article  Google Scholar 

  37. Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788–3796.

    Article  Google Scholar 

  38. Li, Z. L.; Chen, J.; Guo, H. Y.; Fan, X.; Wen, Z.; Yeh, M. H.; Yu, C. W.; Cao, X.; Wang, Z. L. Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater. Adv. Mater. 2016, 28, 2983–2991.

    Article  Google Scholar 

  39. Lin, Z. H.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L. A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem., Int. Ed. 2013, 52, 5065–5069.

    Article  Google Scholar 

  40. Han, C. B.; Jiang, T.; Zhang, C.; Li, X. H.; Zhang, C. Y.; Cao, X.; Wang, Z. L. Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter. ACS Nano 2015, 9, 12552–12561.

    Article  Google Scholar 

  41. Zheng, X.; Su, J. Z.; Wei, X. J.; Jiang, T.; Gao, S. Y.; Wang, Z. L. Self-powered electrochemistry for the oxidation of organic molecules by a cross-linked triboelectric nanogenerator. Adv. Mater. 2016, 28, 5188–5194.

    Article  Google Scholar 

  42. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Nos. 51572040 and 51402112), the Chongqing University Postgraduates’ Innovation Project (No. CYS15016), and the National High-tech R&D Program of China (863 Program) (No. 2015AA034801), the Natural Science Foundation Project of CQ (NSFCQ) (No. cstc2015jcyjA20020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguo Hu.

Electronic supplementary material

12274_2017_1668_MOESM1_ESM.pdf

Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Chen, J., Guo, H. et al. Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion. Nano Res. 11, 633–641 (2018). https://doi.org/10.1007/s12274-017-1668-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1668-2

Keywords

Navigation