Skip to main content
Log in

Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A square-grid triboelectric nanogenerator (SG-TENG) is demonstrated for harvesting vibrational energy and sensing impulsive forces. Each square of the three-dimensional (3D)-printed square grid is filled with an aluminum (Al) ball. The grid structure allows the SG-TENG to harvest vibrational energy over a broad bandwidth and operate at different vibrational angles. The most striking feature of the SG-TENG is its ability of being scaled and integrated. After connecting two SG-TENGs in parallel, the open-circuit voltage and short-circuit current are significantly increased over the full vibrational frequency range. Being integrated with a table tennis racket, the SG-TENG can harvest the vibrational energy from hitting a ping pong ball using the racket, where a direct hit by the racket generates an average output voltage of 10.9 ± 0.6 V and an average output current of 0.09 ± 0.02 μA. Moreover, the SG-TENG integrated into a focus mitt can be used in various combat sports, such as boxing and taekwondo, to monitor the frequency and magnitude of the punches or kicks from boxers and other practitioners. The collected data allow athletes to monitor their status and improve their performance skills. This work demonstrates the enormous potential of the SG-TENG in energy harvesting and sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, W. S.; Jie, Q.; Kim, H. S.; Ren, Z. F. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater. 2015, 87, 357–376.

    Article  Google Scholar 

  2. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

    Article  Google Scholar 

  3. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  Google Scholar 

  4. Hu, Y. F.; Xu, C.; Zhang, Y.; Lin, L.; Snyder, R. L.; Wang, Z. L. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Adv. Mater. 2011, 23, 4068–4071.

    Article  Google Scholar 

  5. Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in zno nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

    Article  Google Scholar 

  6. Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T.-C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

    Article  Google Scholar 

  7. Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

    Article  Google Scholar 

  8. Wang, X. F.; Niu, S. M.; Yi, F.; Yin, Y. J.; Hao, C. L.; Dai, K. R.; Zhang, Y.; You, Z.; Wang, Z. L. Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 2017, 11, 1728–1735.

    Article  Google Scholar 

  9. Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

    Article  Google Scholar 

  10. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

    Article  Google Scholar 

  11. Wen, X. N.; Yang, W. Q.; Jing, Q. S.; Wang, Z. L. Harvesting broadband kinetic impact energy from mechanical triggering/ vibration and water waves. ACS Nano 2014, 8, 7405–7412.

    Article  Google Scholar 

  12. Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Yi, F.; Zheng, X.; Ma, M. Y.; Gao, F. F.; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2017, 29, 1606703.

    Article  Google Scholar 

  13. Ma, M. Y.; Zhang, Z.; Liao, Q. L.; Yi, F.; Han, L. H.; Zhang, G. J.; Liu, S.; Liao, X. Q.; Zhang, Y. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 2017, 32, 389–396.

    Article  Google Scholar 

  14. Li, X. H.; Han, C. B.; Zhang, L. M.; Wang, Z. L. Cylindrical spiral triboelectric nanogenerator. Nano Res. 2015, 8, 3197–3204.

    Article  Google Scholar 

  15. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  Google Scholar 

  16. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  Google Scholar 

  17. Seol, M.-L.; Han, J.-W.; Jeon, S.-B.; Meyyappan, M.; Choi, Y.-K. Floating oscillator-embedded triboelectric generator for versatile mechanical energy harvesting. Sci. Rep. 2015, 5, 16409.

    Article  Google Scholar 

  18. Kim, D.; Oh, Y.; Hwang, B.-W.; Jeon, S.-B.; Park, S.-J.; Choi, Y.-K. Triboelectric nanogenerator based on the internal motion of powder with a package structure design. ACS Nano 2016, 10, 1017–1024.

    Article  Google Scholar 

  19. Seol, M.-L.; Jeon, S.-B.; Han, J.-W.; Choi, Y.-K. Ferrofluidbased triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 2017, 31, 233–238.

    Article  Google Scholar 

  20. Tang, L. H.; Yang, Y. W.; Soh, C. K. Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 1867–1897.

    Article  Google Scholar 

Download references

Acknowledgements

Supports from the “thousands talents” program for the pioneer researcher and his innovation team, the National Key R&D Project from Minister of Science and Technology, China (No. 2016YFA0202704), National Natural Science Foundation of China (Nos. 51432005, 51608039, 5151101243, 51561145021, and 51505457), China Postdoctoral Science Foundation (No. 2015M581041), and Natural Science Foundation of Beijing, China (No. 4154090) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Zhu, W., Gu, G.Q. et al. Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res. 11, 1157–1164 (2018). https://doi.org/10.1007/s12274-017-1824-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1824-8

Keywords

Navigation