Skip to main content
Log in

Self-immolative micellar drug delivery: The linker matters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Redox-responsive polymer-drug conjugate micelles are excellent nanoscale vehicles for self-immolative intracellular drug delivery. To covalently connect the polymer and drug, disulfide-bearing linkers, such as 3,3’-dithiodipropionic acid (DDPA) and 4,4’-dithiodibutyric acid (DDBA), are used. In this paper, we report the influence of linker length on the therapeutic outcome of redox-sensitive conjugate micelles. Curcumin was selected as the model drug and it was conjugated to a multivalent methoxy poly(ethylene glycol)-polylysine copolymer with DDPA or DDBA as the linker. The obtained two polymer-curcumin conjugates were amphiphilic and could self-assemble into micelles that have a hydrodynamic diameter less than 100 nm. The loading of curcumin in both micelles was above 20% (w/w). Irrespective of the linker type, micelle disassembly was observed due to the collapse of the disulfide bond in a reducing environment. However, the rate of curcumin release was much faster with the DDBA linker than with the DDPA linker as the side product was a 5-membered ring with a low ring strain. The linker length-induced variation of curcumin release kinetics caused a significant difference in the intracellular drug concentration and a higher cytotoxicity was witnessed in three model cell lines (HeLa, PC3, and 4T1) for the micelles with a DDBA linker compared to those containing a DDPA linker. As expected, this phenomenon was also observed in HeLa tumor-bearing nude mice in vivo. The current work highlights the significance of linker length in engineering redox-responsive on-demand delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, X. L.; Jing, X. B. Biodegradable amphiphilic polymerdrug conjugate micelles. Expert Opin. Drug Deliv. 2009, 6, 1079–1090.

    Article  Google Scholar 

  2. Yang, R. L.; Zhang, S.; Kong, D. L.; Gao, X. L.; Zhao, Y. J.; Wang, Z. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm. Res. 2012, 29, 3512–3525.

    Article  Google Scholar 

  3. Lv, S. X.; Tang, Z. H.; Zhang, D. W.; Song, W. T.; Li, M. Q.; Lin, J.; Liu, H. Y.; Chen, X. S. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. J. Control. Release 2014, 194, 220–227.

    Article  Google Scholar 

  4. Zhang, J. M.; Chen, R. E.; Fang, X. F.; Chen, F. Q.; Wang, Y. T.; Chen, M. W. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Res. 2015, 8, 201–218.

    Article  Google Scholar 

  5. Peng, M. Y.; Qin, S. Y.; Jia, H. Z.; Zheng, D. W.; Rong, L.; Zhang, X. Z. Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res. 2016, 9, 663–673.

    Article  Google Scholar 

  6. Shen, W. J.; Luan, J. B.; Cao, L. P.; Sun, J.; Yu, L.; Ding, J. D. Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin. Biomacromolecules 2015, 16, 105–115.

    Article  Google Scholar 

  7. Sui, J. H.; Cui, Y.; Cai, H. X.; Bian, S. Q.; Xu, Z. Y.; Zhou, L.; Sun, Y.; Liang, J.; Fan, Y. J.; Zhang, X. D. Synergistic chemotherapeutic effect of sorafenib-loaded pullulan-Dox conjugate nanoparticles against murine breast carcinoma. Nanoscale 2017, 9, 2755–2767.

    Article  Google Scholar 

  8. Yu, Q. S.; Wei, Z. K.; Shi, J. Y.; Guan, S. L.; Du, N.; Shen, T.; Tang, H.; Jia, B.; Wang, F.; Gan, Z. H. Polymerdoxorubicin conjugate micelles based on poly(ethylene glycol) and poly(N-(2-hydroxypropyl) methacrylamide): Effect of negative charge and molecular weight on biodistribution and blood clearance. Biomacromolecules 2015, 16, 2645–2655.

    Article  Google Scholar 

  9. Gao, M.; Chen, C.; Fan, A. P.; Zhang, J.; Kong, D. L.; Wang, Z.; Zhao, Y. J. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers. Nanotechnology 2015, 26, 275101.

    Article  Google Scholar 

  10. Cao, Y. W.; Gao, M.; Chen, C.; Fan, A. P.; Zhang, J.; Kong, D. L.; Wang, Z.; Peer, D.; Zhao, Y. J. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 2015, 26, 115101.

    Article  Google Scholar 

  11. Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

    Article  Google Scholar 

  12. Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev 2012, 64, 866–884.

    Article  Google Scholar 

  13. Riber, C. F.; Smith Anton, A. A.; Zelikin, A. N. Selfimmolative linkers literally bridge disulfide chemistry and the realm of thiol-free drugs. Adv. Healthc. Mater. 2015, 4, 1887–1890.

    Article  Google Scholar 

  14. Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev. Drug Discov. 2014, 13, 813–827.

    Article  Google Scholar 

  15. Wang, Z.; Chen, C.; Zhang, Q.; Gao, M.; Zhang, J.; Kong, D. L.; Zhao, Y. J. Tuning the architecture of polymeric conjugate to mediate intracellular delivery of pleiotropic curcumin. Eur. J. Pharm. Biopharm. 2015, 90, 53–62.

    Article  Google Scholar 

  16. Xiao, W. W.; Suby, N.; Xiao, K.; Lin, T. Y.; Al Awwad, N.; Lam, K. S.; Li, Y. P. Extremely long tumor retention, multiresponsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer. J. Control. Release 2017, 264, 169–179.

    Article  Google Scholar 

  17. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204.

    Article  Google Scholar 

  18. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    Article  Google Scholar 

  19. Such, G. K.; Yan, Y.; Johnston, A. P. R.; Gunawan, S. T.; Caruso, F. Interfacing materials science and biology for drug carrier design. Adv. Mater. 2015, 27, 2278–2297.

    Article  Google Scholar 

  20. Cheng, R.; Meng, F. H.; Deng, C.; Zhong, Z. Y. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today 2015, 10, 656–670.

    Article  Google Scholar 

  21. Zhu, Y. Q.; Zhang, J.; Meng, F. H.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Y. cRGD-functionalized reductionsensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J. Control. Release 2016, 233, 29–38.

    Article  Google Scholar 

  22. Zhong, P.; Zhang, J.; Deng, C.; Cheng, R.; Meng, F. H.; Zhong, Z. Y. Glutathione-sensitive hyaluronic acid-SSmertansine prodrug with a high drug content: Facile synthesis and targeted breast tumor therapy. Biomacromolecules 2016, 17, 3602–3608.

    Article  Google Scholar 

  23. Qiu, J.; Cheng, R.; Zhang, J.; Sun, H. L.; Deng, C.; Meng, F. H.; Zhong, Z. Y. Glutathione-sensitive hyaluronic acidmercaptopurine prodrug linked via carbonyl vinyl sulfide: A robust and CD44-targeted nanomedicine for leukemia. Biomacromolecules 2017, 18, 3207–3214.

    Article  Google Scholar 

  24. Lu, H.; Wang, J.; Song, Z. Y.; Yin, L. C.; Zhang, Y. F.; Tang, H. Y.; Tu, C. L.; Lin, Y.; Cheng, J. J. Recent advances in amino acid ncarboxyanhydrides and synthetic polypeptides: Chemistry, self-assembly and biological applications. Chem. Commun. 2014, 50, 139–155.

    Article  Google Scholar 

  25. Kricheldorf, H. R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew. Chem., Int. Ed. 2006, 45, 5752–5784.

    Article  Google Scholar 

  26. Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2016, 116, 786–808.

    Article  Google Scholar 

  27. Gao, M.; Deng, J.; Chu, H. Y.; Tang, Y.; Wang, Z.; Zhao, Y. J.; Li, G. H. Stereoselective stabilization of polymeric vitamin E conjugate micelles. Biomacromolecules 2017, 18, 4349–4356.

    Article  Google Scholar 

  28. Chen, C.; Tao, R.; Ding, D.; Kong, D. L.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Ratiometric co-delivery of multiple chemodrugs in a single nanocarrier. Eur. J. Pharm. Sci. 2017, 107, 16–23.

    Article  Google Scholar 

  29. Li, H. Y.; Li, M.; Chen, C.; Fan, A. P.; Kong, D. L.; Wang, Z.; Zhao, Y. J. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. Int. J. Pharm. 2015, 495, 572–578.

    Article  Google Scholar 

  30. Dong, X. P.; Guo, X. L.; Liu, G. Q.; Fan, A. P.; Wang, Z.; Zhao, Y. J. When self-assembly meets topology: An enhanced micelle stability. Chem. Commun. 2017, 53, 3822–3825.

    Article  Google Scholar 

  31. Torchilin, V. P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2007, 24, 1–16.

    Article  Google Scholar 

  32. Shi, Y.; Lammers, T.; Storm, G.; Hennink, W. E. Physicochemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery. Macromol. Biosci. 2017, 17, 1660160.

    Article  Google Scholar 

  33. Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano 2013, 7, 7442–7447.

    Article  Google Scholar 

  34. Lv, S. X.; Wu, Y. C.; Cai, K. M.; He, H.; Li, Y. J.; Lan, M.; Chen, X. S.; Cheng, J. J.; Yin, L. C. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor-receptor coordination interactions. J. Am. Chem. Soc. 2018, 140, 1235–1238.

    Article  Google Scholar 

  35. Xin, K. T.; Li, M.; Lu, D.; Meng, X.; Deng, J.; Kong, D. L.; Ding, D.; Wang, Z.; Zhao, Y. J. Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging. ACS Appl. Mater. Interfaces 2017, 9, 80–91.

    Article  Google Scholar 

  36. Owen, S. C.; Chan, D. P. Y.; Shoichet, M. S. Polymeric micelle stability. Nano Today 2012, 7, 53–65.

    Article  Google Scholar 

  37. Maeda, H. Macromolecular therapeutics in cancer treatment: The EPR Effect and beyond. J. Control. Release 2012, 164, 138–144.

    Article  Google Scholar 

  38. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    Article  Google Scholar 

  39. Burns, J. A.; Butler, J. C.; Moran, J.; Whitesides, G. M. Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. J. Org. Chem. 1991, 56, 2648–2650.

    Article  Google Scholar 

  40. Fava, A.; Iliceto, A.; Camera, E. Kinetics of the thiol-disulfide exchange. J. Am. Chem. Soc. 1957, 79, 833–838.

    Article  Google Scholar 

  41. Wang, X.; Li, J.; Yan, Q.; Chen, Y.; Fan, A.; Wang, Z.; Zhao, Y. In situ probing intracellular drug release from redox-responsive micelles by united FRET and AIE. Macromol. Biosci. 2018, 18, 1700339.

    Article  Google Scholar 

  42. Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.

    Article  Google Scholar 

  43. Li, X. D.; Gao, M.; Xin, K. T.; Zhang, L.; Ding, D.; Kong, D. L.; Wang, Z.; Shi, Y.; Kiessling, F.; Lammers, T. et al. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J. Control. Release 2017, 260, 12–21.

    Article  Google Scholar 

  44. Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410.

    Article  Google Scholar 

  45. Shin, D. H.; Tam, Y. T.; Kwon, G. S. Polymeric micelle nanocarriers in cancer research. Front. Chem. Sci. Eng. 2016, 10, 348–359.

    Article  Google Scholar 

  46. Wang, Y. W.; Grainger, D. W. Barriers to advancing nanotechnology to better improve and translate nanomedicines. Front. Chem. Sci. Eng. 2014, 8, 265–275.

    Article  Google Scholar 

  47. Chen, C.; Zhao, J.; Gao, M.; Meng, X.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Photo-triggered micelles: Simultaneous activation and release of microtubule inhibitors for on-demand chemotherapy. Biomater. Sci. 2018, 6, 511–518.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Gao, M., Deng, J. et al. Self-immolative micellar drug delivery: The linker matters. Nano Res. 11, 6177–6189 (2018). https://doi.org/10.1007/s12274-018-2134-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2134-5

Keywords

Navigation