Skip to main content
Log in

Biodegradable Polymer-Curcumin Conjugate Micelles Enhance the Loading and Delivery of Low-Potency Curcumin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To utilize a novel type of polymer-drug conjugate micelle to enhance the delivery of low-potency curcumin.

Methods

Multiple curcumin molecules were conjugated to poly(lactic acid) (PLA) via tris(hydroxymethyl)aminomethane (Tris) linker producing the hydrophobic drug-binding block; methoxy-poly(ethylene glycol) (mPEG) was employed as the hydrophilic block. Micelles were characterized by size, loading capacity, stability, and critical micelle concentration (CMC). Human hepatocellular carcinoma (HepG2) cells were employed to assess cytotoxicity and intracellular targeting ability of micelles.

Results

mPEG-PLA-Tris-Cur micelles were within nanorange (<100 nm). CMC of such micelles (2.3 ± 0.4 μg/mL) was 10 times lower than mPEG-PLA micelles (27.4 ± 0.8 μg/mL). Curcumin loading in mPEG-PLA-Tris-Cur micelles reached 18.5 ± 1.3% (w/w), compared to traditional mPEG-PLA micelles at 3.6 ± 0.4% (w/w). IC50 of mPEG-PLA-Tris-Cur micelles (~22 μg/mL at curcumin-equivalent dose) was similar to unmodified curcumin. Placebo and drug-encapsulated conjugate micelles could be efficiently internalized to cytoplasmic compartment of HepG2 cells.

Conclusions

Micelle-forming polymer-drug conjugates containing multiple drug molecules were an efficient means to increase loading and intracellular delivery of low-potency curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CLSM:

confocal laser scanning microscope

CMC:

critical micelle concentration

Cur:

curcumin

Cur-GA:

mono-carboxyl-terminated curcumin

DCC:

dicyclohexylcarbodiimide

DMAP:

4-dimethylamino pyridine

DMEM:

Dulbecco’s modification of eagle’s medium

DMF:

N,N-dimethylformamide

EPR:

enhanced permeability and retention effect

GA:

gluraric anhydride

GRAS:

generally regarded as safe

HepG2:

human hepatocellular carcinoma cells

HPLC:

high performance liquid chromatography

mPEG:

methoxy-poly(ethylene glycol)

MPS:

mononuclear phagocyte system

MWCO:

molecular weight cut-off

NHS:

N-hydroxy succinimide

NMR:

nuclear magnetic resonance

PCL:

polycaprolactone

PLA:

poly(lactic acid)

RBC:

red blood cells

THF:

tetrahydrofuran

Tris:

tris(hydroxymethyl)aminomethane

References

  1. Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, Wang J, Tang J, Fan M, Van Kirk E, Murdoch WJ. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc. 2010;132(12):4259–65.

    Article  PubMed  CAS  Google Scholar 

  2. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161–71.

    Article  PubMed  CAS  Google Scholar 

  3. Shin HC, Alani AWG, Cho H, Bae Y, Kolesar JM, Kwon GS. A 3-in-1 Polymeric Micelle nanocontainer for poorly water-soluble drugs. Mol Pharm. 2011;8(4):1257–65.

    Article  PubMed  CAS  Google Scholar 

  4. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    Article  PubMed  CAS  Google Scholar 

  5. Tang H, Murphy CJ, Zhang B, Shen Y, Sui M, Van Kirk EA, Feng X, Murdoch W. Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: in vitro and in vivo effects. Nanomedicine (Lond). 2010;5(6):855–65.

    Article  CAS  Google Scholar 

  6. Tang H, Murphy CJ, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, Radosz M. Curcumin polymers as anticancer conjugates. Biomaterials. 2010;31(27):7139–49.

    Article  PubMed  CAS  Google Scholar 

  7. Lao C, Ruffin M, Normolle D, Heath D, Murray S, Bailey J, Boggs M, Crowell J, Rock C, Brenner D. Dose escalation of a curcuminoid formulation. BMC Complementary Altern Med. 2006;6(1):10.

    Article  Google Scholar 

  8. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    Article  PubMed  CAS  Google Scholar 

  9. Yallapu MM, Jaggi M, Chauhan SC. Beta-cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B. 2010;79(1):113–25.

    Article  CAS  Google Scholar 

  10. Anand P, Nair HB, Sung BK, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol. 2010;79(3):330–8.

    Article  PubMed  CAS  Google Scholar 

  11. Shahani K, Panyam J. Highly loaded, sustained-release microparticles of curcumin for chemoprevention. J Pharm Sci. 2011;100(7):2599–609.

    Article  PubMed  CAS  Google Scholar 

  12. Safavy A, Raisch KP, Mantena S, Sanford LL, Sham SW, Krishna NR, Bonner JA. Design and development of water-soluble curcumin conjugates as potential anticancer agents. J Med Chem. 2007;50(24):6284–8.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang F, Koh GY, Jeansonne DP, Hollingsworth J, Russo PS, Vicente G, Stout RW, Liu Z. A novel solubility-enhanced curcumin formulation showing stability and maintenance of anticancer activity. J Pharm Sci. 2011;100(7):2778–89.

    Article  PubMed  CAS  Google Scholar 

  14. Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011;359(1):318–25.

    Article  PubMed  CAS  Google Scholar 

  15. Manju S, Sreenivasan K. Synthesis and characterization of a cytotoxic cationic polyvinylpyrrolidone-curcumin conjugate. J Pharm Sci. 2011;100(2):504–11.

    Article  PubMed  CAS  Google Scholar 

  16. Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A. 2008;86(2):300–10.

    PubMed  Google Scholar 

  17. Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. 2011;3(4):1558–67.

    Article  PubMed  CAS  Google Scholar 

  18. Mohanty C, Acharya S, Mohanty AK, Dilnawaz F, Sahoo SK. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine (Lond). 2010;5(3):433–49.

    Article  CAS  Google Scholar 

  19. Pitarresi G, Palumbo FS, Albanese A, Fiorica C, Picone P, Giammona G. Self-assembled amphiphilic hyaluronic acid graft copolymers for targeted release of antitumoral drug. J Drug Target. 2010;18(4):264–76.

    Article  PubMed  CAS  Google Scholar 

  20. Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater. 2008;4(6):1752–61.

    Article  PubMed  CAS  Google Scholar 

  21. Li ZB, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP. Multicompartment micelles from ABC miktoarm stars in water. Science. 2004;306(5693):98–101.

    Article  PubMed  CAS  Google Scholar 

  22. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Seto T, Kataoka K. Preparation of micelle-forming polymer-drug conjugates. Bioconjugate Chem. 1992;3(4):295–301.

    Article  CAS  Google Scholar 

  23. Hu X, Jing X. Biodegradable amphiphilic polymer-drug conjugate micelles. Expert Opin Drug Deliv. 2009;6(10):1079–90.

    Article  PubMed  CAS  Google Scholar 

  24. Discher DE, Kamien RD. Self-assembly —towards precision micelles. Nature. 2004;430(6999):519–20.

    Article  PubMed  CAS  Google Scholar 

  25. Hans M, Shimoni K, Danino D, Siegel SJ, Lowman A. Synthesis and characterization of mPEG-PLA prodrug micelles. Biomacromolecules. 2005;6(5):2708–17.

    Article  PubMed  CAS  Google Scholar 

  26. Shi W, Dolai S, Rizk S, Hussain A, Tariq H, Averick S, L’Amoreaux W, El Idrissi A, Banerjee P, Raja K. Synthesis of monofunctional curcumin derivatives, clicked curcumin dimer, and a PAMAM dendrimer curcumin conjugate for therapeutic applications. Org Lett. 2007;9(26):5461–4.

    Article  PubMed  CAS  Google Scholar 

  27. Li S, Vert M. Synthesis, characterization, and stereocomplex-induced gelation of block copolymers prepared by ring-opening polymerization of l(d)-lactide in the presence of poly(ethylene glycol). Macromolecules. 2003;36(21):8008–14.

    Article  CAS  Google Scholar 

  28. Zhang X, Li Y, Chen X, Wang X, Xu X, Liang Q, Hu J, Jing X. Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterials. 2005;26(14):2121–8.

    Article  PubMed  CAS  Google Scholar 

  29. Zhu W, Li Y, Liu L, Zhang W, Chen Y, Xi F. Biamphiphilic triblock copolymer micelles as a multifunctional platform for anticancer drug delivery. J Biomed Mater Res A. 2011;96A(2):330–40.

    Article  CAS  Google Scholar 

  30. Date AA, Nagarsenker MS, Patere S, Dhawan V, Gude RP, Hassan PA, Aswal V, Steiniger F, Thamm J, Fahr A. Lecithin-based novel cationic nanocarriers (Leciplex) II: improving therapeutic efficacy of quercetin on oral administration. Mol Pharm. 2011;8(3):716–26.

    Article  PubMed  CAS  Google Scholar 

  31. Prajapati RN, Tekade RK, Gupta U, Gajbhiye V, Jain NK. Dendimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. Mol Pharm. 2009;6(3):940–50.

    Article  PubMed  CAS  Google Scholar 

  32. Kwon GS, Okano T. Soluble Self-assembled block copolymers for drug delivery. Pharm Res. 1999;16(5):597–600.

    Article  PubMed  CAS  Google Scholar 

  33. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235–7.

    Article  PubMed  CAS  Google Scholar 

  34. Torchilin V. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang L, Eisenberg A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science. 1995;268(5218):1728–31.

    Article  PubMed  CAS  Google Scholar 

  36. Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res. 1998;15(2):270–5.

    Article  PubMed  CAS  Google Scholar 

  37. Parikh T, Bommana MM, Squillante III E. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Eur J Pharm Biopharm. 2010;74(3):442–50.

    Article  PubMed  CAS  Google Scholar 

  38. Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials. 2004;25(14):2843–9.

    Article  PubMed  CAS  Google Scholar 

  39. Gref R, Miralles G, Dellacherie E. Polyoxyethylene-coated nanospheres: effect of coating on zeta potential and phagocytosis. Polym Int. 1999;48(4):251–6.

    Article  CAS  Google Scholar 

  40. Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(d, l-lactide)-block-poly(ethylene oxide) micelles. J Control Release. 2004;94(2–3):323–35.

    Article  PubMed  CAS  Google Scholar 

  41. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B. 1999;16(1–4):3–27.

    Article  CAS  Google Scholar 

  42. Nagarajan R, Ganesh K. Block copolymer self-assembly in selective solvents: theory of solubilization in spherical micelles. Macromolecules. 1989;22(11):4312–25.

    Article  CAS  Google Scholar 

  43. Kim SH, Tan JPK, Nederberg F, Fukushima K, Colson J, Yang C, Nelson A, Yang YY, Hedrick JL. Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials. 2010;31(31):8063–71.

    Article  PubMed  CAS  Google Scholar 

  44. Lee ALZ, Venkataraman S, Sirat SBM, Gao S, Hedrick JL, Yang YY. The use of cholesterol-containing biodegradable block copolymers to exploit hydrophobic interactions for the delivery of anticancer drugs. Biomaterials. 2012;33(6):1921–8.

    Article  PubMed  CAS  Google Scholar 

  45. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15(12):1867–76.

    Article  PubMed  CAS  Google Scholar 

  46. Yallapu MM, Ebeling MC, Chauhan N, Jaggi M, Chauhan SC. Interaction of curcumin nanoformulations with human plasma proteins and erythrocytes. Int J Nanomedicine. 2011;6:2779–90.

    PubMed  CAS  Google Scholar 

  47. Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98(3):415–26.

    Article  PubMed  CAS  Google Scholar 

  48. Luo L, Tam J, Maysinger D, Eisenberg A. Cellular internalization of poly(ethylene oxide)-b-poly(ε-caprolactone) diblock copolymer micelles. Bioconjugate Chem. 2002;13(6):1259–65.

    Article  CAS  Google Scholar 

  49. Aryal S, Hu CMJ, Zhang L. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharm. 2011;8(4):1401–7.

    Article  PubMed  CAS  Google Scholar 

  50. Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science. 2003;300(5619):615–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by Tianjin Research Program of Application Foundation and Advanced Technology (11JCZDJC20600; 11JCYBJC10300), National Natural Science Foundation of China (81171478; 31100699), and the Research Fund for the Doctoral Program of Higher Education of China (20110032120077).

The authors of this article have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjun Zhao or Zheng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

1H NMR spectra of mPEG-PLA, mPEG-PLA-COOH, and mPEG-PLA-Tris. (TIFF 4019 kb)

Esm 2

1H NMR spectra of Cur-GA, 821. (TIFF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, R., Zhang, S., Kong, D. et al. Biodegradable Polymer-Curcumin Conjugate Micelles Enhance the Loading and Delivery of Low-Potency Curcumin. Pharm Res 29, 3512–3525 (2012). https://doi.org/10.1007/s11095-012-0848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0848-8

KEY WORDS

Navigation