Skip to main content
Log in

Self-delivery of a peptide-based prodrug for tumor-targeting therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel self-delivered prodrug system was fabricated for tumor-targeting therapy. In this nanosystem, the Arg-Gly-Asp-Ser (RGDS) tetrapeptide was used to improve the therapeutic index to integrin-overexpressing tumor cells. The antitumorous drug camptothecin was further appended to the ε-amino group of lysine by 20-O-succinyl linkage and controllably released via hydrolytic cleavage. Prodrug molecules self-assembled into fibrillar nano-architectures and achieved the capability of self-delivery after being injected subcutaneously into mice. Introduction of hydrophobic myristic acid favored the self-assembly and enhanced the cellular internalization of the prodrugs. In vitro and in vivo studies demonstrated that the self-assembled nanofibers could effectively target integrinoverexpressing tumorous cells and inhibit tumor growth via RGD-mediated specific targeting. Therefore, the traditional idea that fibrillar structures hold low therapeutic efficacy due to poor cell uptake can be challenged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.

    Article  Google Scholar 

  2. Ding, J. X.; Chen, L. H.; Xiao, C. S.; Chen, L.; Zhuang, X. L.; Chen, X. S. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem. Commun. 2014, 50, 11274–11290.

    Article  Google Scholar 

  3. Yu, J. M.; Xie, X.; Xu, X. Y.; Zhang, L.; Zhou, X. Y.; Yu, H.; Wu, P.; Wang, T.; Che, X. X.; Hu, Z. H. Development of dual ligand-targeted polymeric micelles as drug carriers for cancer therapy in vitro and in vivo. J. Mater. Chem. B 2014, 2, 2114–2126.

    Article  Google Scholar 

  4. Zhang, J.; Yuan, Z. F.; Wang, Y.; Chen, W. H.; Luo, G. F.; Cheng, S. X.; Zhuo, R. X.; Zhang, X. Z. Multifunctional envelope-type mesoporous silica nanoparticles for tumortriggered targeting drug delivery. J. Am. Chem. Soc. 2013, 135, 5068–5073.

    Article  Google Scholar 

  5. Liang, R. Z.; Wei, M.; Evans, D. G.; Duan, X. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem. Commun. 2014, 50, 14071–14081.

    Article  Google Scholar 

  6. Li, Z. Y.; Hu, J. J.; Xu, Q.; Chen, S.; Jia, H. Z.; Sun, Y. X.; Zhuo, R. X.; Zhang, X. Z. A redox-responsive drug delivery system based on RGD containing peptide-capped mesoporous silica nanoparticles. J. Mater. Chem. B 2015, 3, 39–44.

    Article  Google Scholar 

  7. Xiang, X.; Ding, X. C.; Moser, T.; Gao, Q.; Shokuhfar, T.; Heiden, P. A. Peptide-directed self-assembly of functionalized polymeric nanoparticles. Part II: Effects of nanoparticle composition on assembly behavior and multiple drug loading ability. Macromol. Biosci. 2015, 15, 568–582.

    Article  Google Scholar 

  8. Xiao, D.; Jia, H. Z.; Ma, N.; Zhuo, R. X.; Zhang, X. Z. A redox-responsive mesoporous silica nanoparticle capped with amphiphilic peptides by self-assembly for cancer targeting drug delivery. Nanoscale 2015, 7, 10071–10077.

    Article  Google Scholar 

  9. Shen, Y. Q.; Jin, E. L.; Zhang, B.; Murphy, C. J.; Sui, M. H.; Zhao, J.; Wang, J. Q.; Tang, J. B.; Fan, M. H.; van Kirk, E. et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J. Am. Chem. Soc. 2010, 132, 4259–4265.

    Article  Google Scholar 

  10. Huttunen, K. M.; Raunio, H.; Rautio, J. Prodrugs-from serendipity to rational design. Pharmacol. Rev. 2011, 63, 750–771.

    Article  Google Scholar 

  11. Bui, D. T.; Maksimenko, A.; Desmaële, D.; Harrisson, S.; Vauthier, C.; Couvreur, P.; Nicolas, J. Polymer prodrug nanoparticles based on naturally occurring isoprenoid for anticancer therapy. Biomacromolecules 2013, 14, 2837–2847.

    Article  Google Scholar 

  12. Yuan, Y. Y.; Kwok, R. T. K.; Tang, B. Z.; Liu, B. Targeted theranostic platinum(IV) prodrug with a built-in aggregationinduced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem. Soc. 2014, 136, 2546–2554.

    Article  Google Scholar 

  13. Chen, W. H.; Luo, G. F.; Lei, Q.; Jia, H. Z.; Hong, S.; Wang, Q. R.; Zhuo, R. X.; Zhang, X. Z. MMP-2 responsive polymeric micelles for cancer-targeted intracellular drug delivery. Chem. Commun. 2015, 51, 465–468.

    Article  Google Scholar 

  14. Cheetham, A. G.; Zhang, P. C.; Lin, Y. A.; Lock, L. L.; Cui, H. G. Supramolecular nanostructures formed by anticancer drug assembly. J. Am. Chem. Soc. 2013, 135, 2907–2910.

    Article  Google Scholar 

  15. Li, S. Y.; Liu, L. H.; Jia, H. Z.; Qiu, W. X.; Rong, L.; Cheng, H.; Zhang, X. Z. A pH-responsive prodrug for real-time drug release monitoring and targeted cancer therapy. Chem. Commun. 2014, 50, 11852–11855.

    Article  Google Scholar 

  16. Huang, P.; Wang, D. L.; Su, Y.; Huang, W.; Zhou, Y. F.; Cui, D. X.; Zhu, X. Y.; Yan, D. Y. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug–drug conjugate for cancer therapy. J. Am. Chem. Soc. 2014, 136, 11748–11756.

    Article  Google Scholar 

  17. Zhang, T.; Huang, P.; Shi, L. L.; Su, Y.; Zhou, L. Z.; Zhu, X. Y.; Yan, D. Y. Self-assembled nanoparticles of amphiphilic twin drug from floxuridine and bendamustine for cancer therapy. Mol. Pharmaceutics 2015, 12, 2328–2336.

    Article  Google Scholar 

  18. Standley, S. M.; Toft, D. J.; Cheng, H.; Soukasene, S.; Chen, J.; Raja, S. M.; Band, V.; Band, H.; Cryns, V. L.; Stupp, S. I. Induction of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res. 2010, 70, 3020–3026.

    Article  Google Scholar 

  19. Jiang, X.; Qu, W.; Pan, D.; Ren, Y.; Williford, J. M.; Cui, H. G.; Luijten, E.; Mao H. Q. Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv. Mater. 2013, 25, 227–232.

    Article  Google Scholar 

  20. Kim, S. H.; Kaplan, J. A.; Sun, Y.; Shieh, A.; Sun, H. L.; Croce, C. M.; Grinstaff, M. W.; Parquette, J. R. The selfassembly of anticancer camptothecin-dipeptide nanotubes: A minimalistic and high drug loading approach to increased efficacy. Chem.—Eur. J. 2015, 21, 101–105.

    Article  Google Scholar 

  21. Garlich, J. R.; De, P.; Dey, N.; Su, J. D.; Peng, X. D.; Miller, A.; Murali, R.; Lu, Y. L.; Mills, G. B.; Kundra, V. et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res. 2008, 68, 206–215.

    Article  Google Scholar 

  22. Fairbanks, B. D.; Schwartz, M. P.; Halevi, A. E.; Nuttelman, C. R.; Bowman, C. N.; Anseth, K. S. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 2009, 21, 5005–5010.

    Article  Google Scholar 

  23. Qin, S. Y.; Jiang, H. F.; Peng, M. Y.; Lei, Q.; Zhuo, R. X.; Zhang, X. Z. Adjustable nanofibers self-assembled from an irregular conformational peptide amphiphile. Polym. Chem. 2015, 6, 519–524.

    Article  Google Scholar 

  24. Das, P.; Jana, N. R. Dopamine functionalized polymeric nanoparticle for targeted drug delivery. RSC Adv. 2015, 5, 33586–33594.

    Article  Google Scholar 

  25. Cheng, H.; Cheng, Y. J.; Bhasin, S.; Zhu, J. Y.; Xu, X. D.; Zhuo, R. X.; Zhang, X. Z. Complementary hydrogen bonding interaction triggered co-assembly of an amphiphilic peptide and an anti-tumor drug. Chem. Commun. 2015, 51, 6936–6939.

    Article  Google Scholar 

  26. Cui, H. G.; Webber, M. J.; Stupp, S. I. Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers 2010, 94, 1–18.

    Article  Google Scholar 

  27. Nabiev, I.; Fleury, F.; Kudelina, I.; Pommier, Y.; Charton, F.; Riou, J. F.; Alix, A. J. P.; Manfait, M. Spectroscopic and biochemical characterisation of self-aggregates formed by antitumor drugs of the camptothecin family. Biochem. Pharmacol. 1998, 55, 1163–1174.

    Article  Google Scholar 

  28. Qin, S. Y.; Peng, M. Y.; Rong, L.; Li, B.; Wang, S. B.; Cheng, S. X.; Zhuo, R. X.; Zhang, X. Z. Self-defensive nano-assemblies from camptothecin-based antitumor drugs. Regen. Biomat. 2015, 2, 159–166.

    Article  Google Scholar 

  29. Yang, Z. M.; Liang, G. L.; Xu, B. Supramolecular hydrogels based on β-amino acid derivatives. Chem. Commun. 2006, (7), 738–740.

    Article  Google Scholar 

  30. Qin, S. Y.; Pei, Y.; Liu, X. J.; Zhuo, R. X.; Zhang, X. Z. Hierarchical self-assembly of β-amyloid peptide derivative. J. Mater. Chem. B 2013, 1, 668–675.

    Article  Google Scholar 

  31. Lee, M. H.; Kim, J. Y.; Han, J. H.; Bhuniya, S.; Sessler, J. L.; Kang, C.; Kim. J. S. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug. J. Am. Chem. Soc. 2012, 134, 12668–12674.

    Article  Google Scholar 

  32. Oussoren, C.; Storm, G. Liposomes to target the lymphatics by subcutaneous administration. Adv. Drug Deliv. Rev. 2001, 50, 143–156.

    Article  Google Scholar 

  33. Lee, H.; Yu, M. K.; Park, S.; Moon, S.; Min, J. J.; Jeong, Y. Y.; Kang, H.-W.; Jon, S. Thermally cross-linked superparamagnetic iron oxide nanoparticles: Synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc. 2007, 129, 12739–12745.

    Article  Google Scholar 

  34. Koo, O. M. Y.; Rubinstein, I.; Önyüksel, H. Actively targeted low-dose camptothecin as a safe, long-acting, diseasemodifying nanomedicine for rheumatoid arthritis. Pharm. Res. 2011, 28, 776–787.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzheng Zhang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, M., Qin, S., Jia, H. et al. Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res. 9, 663–673 (2016). https://doi.org/10.1007/s12274-015-0945-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0945-1

Keywords

Navigation