Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials


Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH3, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 ppm-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.


  1. [1]

    Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20.

    Article  Google Scholar 

  2. [2]

    Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

    Article  Google Scholar 

  3. [3]

    Korotcenkov, G. Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuat. B Chem. 2015, 107, 209–232.

    Article  Google Scholar 

  4. [4]

    Palmisano, V.; Weidner, E.; Boon-Brett, L.; Bonato, C.; Harskamp, F.; Moretto, P.; Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W. J. Selectivity and resistance to poisons of commercial hydrogen sensors. Int. J. Hydrogen Energy 2015, 40, 11740–11747.

    Article  Google Scholar 

  5. [5]

    Modi, A.; Koratkar, N.; Lass, E.; Wei, B. Q.; Ajayan, P. M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 2003, 424, 171–174.

    Article  Google Scholar 

  6. [6]

    Usha, S. P.; Mishra, S. K.; Gupta, B. D. Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance. Sens. Actuat. B Chem. 2015, 218, 196–204.

    Article  Google Scholar 

  7. [7]

    Chen, G. G.; Paronyan, T. M.; Pigos, E. M.; Harutyunyan, A. R. Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep. 2012, 2, 343.

    Article  Google Scholar 

  8. [8]

    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

    Article  Google Scholar 

  9. [9]

    Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24.

    Article  Google Scholar 

  10. [10]

    Kannan, P. K.; Late, D. J.; Morgan, H.; Rout, C. S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 2015, 7, 13293–13312.

    Article  Google Scholar 

  11. [11]

    Li, B. L.; Wang, J. P.; Zou, H. L.; Garaj, S.; Lim, C. T.; Xie, J. P.; Li, N. B.; Leong, D. T. Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Funct. Mater. 2016, 26, 7034–7056.

    Article  Google Scholar 

  12. [12]

    Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.

    Article  Google Scholar 

  13. [13]

    Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y.-J.; Park, S.-G.; Kwon, J.-D.; Kim, C. S.; Song, M. et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 2015, 5, 8052.

    Article  Google Scholar 

  14. [14]

    Late, D. J.; Huang, Y.-K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.

    Article  Google Scholar 

  15. [15]

    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  16. [16]

    Ko, K. Y.; Song, J.-G.; Kim, Y.; Choi, T.; Shin, S.; Lee, C. W.; Lee, K.; Koo, J.; Lee, H.; Kim, J. et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 2016, 10, 9287–9296.

    Article  Google Scholar 

  17. [17]

    O’Brien, M.; Lee, K.; Morrish, R.; Berner, N. C.; McEvoy, N.; Wolden, C. A.; Duesberg, G. S. Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett. 2014, 615, 6–10.

    Article  Google Scholar 

  18. [18]

    Zhou, C. J.; Yang, W. H.; Zhu, H. L. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2. J. Chem. Phys. 2015, 142, 214704.

    Article  Google Scholar 

  19. [19]

    Asres, G. A.; Dombovari, A.; Sipola, T.; Pskás, R.; Kukovecz, A.; Kónya, Z.; Popov, A.; Lin, J.-F.; Lorite, G. S.; Mohl, M. et al. A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor. Sci. Rep. 2016, 6, 25610.

    Article  Google Scholar 

  20. [20]

    Ma, J. M.; Mei, L.; Chen, Y. J.; Li, Q. H.; Wang, T. H.; Xu, Z.; Duan, X. C.; Zheng, W. J. α-Fe2O3 nanochains: Ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas. Nanoscale 2013, 5, 895–898.

    Article  Google Scholar 

  21. [21]

    Li, Z. J.; Huang, Y. W.; Zhang, S. C.; Chen, W. M.; Kuang, Z.; Ao, D. Y.; Liu, W.; Fu, Y. Q. A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit. J. Hazard. Mater. 2015, 300, 167–174.

    Article  Google Scholar 

  22. [22]

    Manorama, S.; Devi, G. S.; Rao, V. J. Hydrogen sulfide sensor based on tin oxide deposited by spray pyrolysis and microwave plasma chemical vapor deposition. Appl. Phys. Lett. 1994, 64, 3163–3165.

    Article  Google Scholar 

  23. [23]

    Kneer, J.; Knobelspies, S.; Bierer, B.; Wollenstein, J.; Palzer, S. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens. Actuat. B Chem 2016, 222, 625–631.

    Article  Google Scholar 

  24. [24]

    Zhang, F.; Zhu, A. W.; Luo, Y. P.; Tian, Y.; Yang, J. H.; Qin, Y. CuO nanosheets for sensitive and selective determination of H2S with high recovery ability. J. Phys. Chem. C 2010, 114, 19214–19219.

    Article  Google Scholar 

  25. [25]

    Li, Y. H.; Luo, W.; Qin, N.; Dong, J. P.; Wei, J.; Li, W.; Feng, S. S.; Chen, J. C.; Xu, J. Q.; Elzatahry, A. A. et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew. Chem., Int. Ed. 2014, 53, 9035–9040.

    Article  Google Scholar 

  26. [26]

    Li, Z. J.; Niu, X. Y.; Lin, Z. J.; Wang, N. N.; Shen, H. H.; Liu, W.; Sun, K.; Fu, Y. Q.; Wang, Z. G. Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature. J. Alloy. Comp. 2016, 682, 647–653.

    Article  Google Scholar 

  27. [27]

    Li, M.; Zhou, D. X.; Zhao, J.; Zheng, Z. P.; He, J. G.; Hu, L.; Xia, Z.; Tang, J.; Liu, H. Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection. Sens. Actuat. B Chem. 2015, 217, 198–201.

    Article  Google Scholar 

  28. [28]

    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  29. [29]

    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car.; R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

    Article  Google Scholar 

  30. [30]

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  31. [31]

    Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662.

    Article  Google Scholar 

  32. [32]

    Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  33. [33]

    Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.

    Article  Google Scholar 

  34. [34]

    Kukkola, J.; Mohl, M.; Leino, A.-R.; Maklin, J.; Halonen, N.; Shchukarev, A; Konya, Z.; Jantunen, H.; Kordás, K. Room temperature hydrogen sensors based on metal decorated WO3 nanowires. Sens. Actuat. B Chem. 2013, 186, 90–95.

    Article  Google Scholar 

  35. [35]

    Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416.

    Article  Google Scholar 

  36. [36]

    Perrozzi, F.; Emamjomeh, S. M.; Paolucci, V.; Taglieri, G.; Ottaviano, L.; Cantalini, C. Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens. Actuat. B Chem. 2017, 243, 812–822.

    Article  Google Scholar 

  37. [37]

    Kukkola, J.; Mohl, M.; Leino, A.-R.; Tóth, G.; Wu, M.-C.; Shchukarev, A.; Popov, A.; Mikkola, J.-P.; Lauri, J.; Riihimäki, M. et al. Inkjet-printed gas sensors: Metal decorated WO3 nanoparticles and their gas sensing properties. J. Mater. Chem. 2012, 22, 17878–17886.

    Article  Google Scholar 

  38. [38]

    Kukkola, J.; Maklin, J.; Halonen, N.; Kyllönen, T.; Tóth, G.; Szabó, M.; Shchukarev, A.; Mikkola, J.-P.; Jantunen, H.; Kordás, K. Gas sensors based on anodic tungsten oxide. Sens. Actuat. B Chem. 2011, 153, 293–300.

    Article  Google Scholar 

  39. [39]

    Cha, J.-H.; Choi, S.-J.; Yu, S.; Kim, I.-D. 2D WS2-edge functionalized multi-channel carbon nanofibers: Effect of WS2 edge-abundant structure on room temperature NO2 sensing. J. Mater. Chem. A 2017, 5, 8725–8732.

    Article  Google Scholar 

Download references


Funding received from Bio4Energy programme, Academy of Finland (projects Suplacat and ClintoxNP (No. 268944)), University of Oulu (More than Moore research community) and University of Oulu Graduate School (Infotech Oulu) is acknowledged. We acknowledge support from the EU (No. ERC-2016-AdG-694097 QSpec-NewMat) and the Basque Government “Grupos Consolidados UPV/EHU” (No. IT578-13). J. J. B. and L. D. X. thank the EU for the Marie Curie Fellowship (Nos. H2020-MSCA-IF-2016-751047 and H2020-MSCA-IF-2015-709382). A. P. P. thanks postdoctoral fellowship from the Spanish “Juan de la Cierva-incorporación” program (No. IJCI-2014-20147). We also would like to acknowledge Sami Saukko (Center of Microscopy and Nanotechnology, University of Oulu) for his assistance with TEM analyses. A. L. S. acknowledges the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009-00971).

Author information



Corresponding authors

Correspondence to Ángel Rubio or Krisztian Kordás.

Electronic supplementary material


Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials

Rights and permissions

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asres, G.A., Baldoví, J.J., Dombovari, A. et al. Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res. 11, 4215–4224 (2018). https://doi.org/10.1007/s12274-018-2009-9

Download citation


  • WS2
  • nanowire
  • nanoflake
  • gas sensor
  • H2S
  • O doping