Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors
2015, 3, 1–20.
Article
Google Scholar
Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater.
2012, 22, 3326–3370.
Article
Google Scholar
Korotcenkov, G. Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuat. B Chem.
2015, 107, 209–232.
Article
Google Scholar
Palmisano, V.; Weidner, E.; Boon-Brett, L.; Bonato, C.; Harskamp, F.; Moretto, P.; Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W. J. Selectivity and resistance to poisons of commercial hydrogen sensors. Int. J. Hydrogen Energy
2015, 40, 11740–11747.
Article
Google Scholar
Modi, A.; Koratkar, N.; Lass, E.; Wei, B. Q.; Ajayan, P. M. Miniaturized gas ionization sensors using carbon nanotubes. Nature
2003, 424, 171–174.
Article
Google Scholar
Usha, S. P.; Mishra, S. K.; Gupta, B. D. Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance. Sens. Actuat. B Chem.
2015, 218, 196–204.
Article
Google Scholar
Chen, G. G.; Paronyan, T. M.; Pigos, E. M.; Harutyunyan, A. R. Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep.
2012, 2, 343.
Article
Google Scholar
Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater.
2007, 6, 652–655.
Article
Google Scholar
Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater.
2003, 2, 19–24.
Article
Google Scholar
Kannan, P. K.; Late, D. J.; Morgan, H.; Rout, C. S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale
2015, 7, 13293–13312.
Article
Google Scholar
Li, B. L.; Wang, J. P.; Zou, H. L.; Garaj, S.; Lim, C. T.; Xie, J. P.; Li, N. B.; Leong, D. T. Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Funct. Mater.
2016, 26, 7034–7056.
Article
Google Scholar
Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett.
2013, 13, 668–673.
Article
Google Scholar
Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y.-J.; Park, S.-G.; Kwon, J.-D.; Kim, C. S.; Song, M. et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep.
2015, 5, 8052.
Article
Google Scholar
Late, D. J.; Huang, Y.-K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano
2013, 7, 4879–4891.
Article
Google Scholar
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.
2012, 7, 699–712.
Article
Google Scholar
Ko, K. Y.; Song, J.-G.; Kim, Y.; Choi, T.; Shin, S.; Lee, C. W.; Lee, K.; Koo, J.; Lee, H.; Kim, J. et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano
2016, 10, 9287–9296.
Article
Google Scholar
O’Brien, M.; Lee, K.; Morrish, R.; Berner, N. C.; McEvoy, N.; Wolden, C. A.; Duesberg, G. S. Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett.
2014, 615, 6–10.
Article
Google Scholar
Zhou, C. J.; Yang, W. H.; Zhu, H. L. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2. J. Chem. Phys.
2015, 142, 214704.
Article
Google Scholar
Asres, G. A.; Dombovari, A.; Sipola, T.; Pskás, R.; Kukovecz, A.; Kónya, Z.; Popov, A.; Lin, J.-F.; Lorite, G. S.; Mohl, M. et al. A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor. Sci. Rep.
2016, 6, 25610.
Article
Google Scholar
Ma, J. M.; Mei, L.; Chen, Y. J.; Li, Q. H.; Wang, T. H.; Xu, Z.; Duan, X. C.; Zheng, W. J. α-Fe2O3 nanochains: Ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas. Nanoscale
2013, 5, 895–898.
Article
Google Scholar
Li, Z. J.; Huang, Y. W.; Zhang, S. C.; Chen, W. M.; Kuang, Z.; Ao, D. Y.; Liu, W.; Fu, Y. Q. A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit. J. Hazard. Mater.
2015, 300, 167–174.
Article
Google Scholar
Manorama, S.; Devi, G. S.; Rao, V. J. Hydrogen sulfide sensor based on tin oxide deposited by spray pyrolysis and microwave plasma chemical vapor deposition. Appl. Phys. Lett.
1994, 64, 3163–3165.
Article
Google Scholar
Kneer, J.; Knobelspies, S.; Bierer, B.; Wollenstein, J.; Palzer, S. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens. Actuat. B Chem
2016, 222, 625–631.
Article
Google Scholar
Zhang, F.; Zhu, A. W.; Luo, Y. P.; Tian, Y.; Yang, J. H.; Qin, Y. CuO nanosheets for sensitive and selective determination of H2S with high recovery ability. J. Phys. Chem. C
2010, 114, 19214–19219.
Article
Google Scholar
Li, Y. H.; Luo, W.; Qin, N.; Dong, J. P.; Wei, J.; Li, W.; Feng, S. S.; Chen, J. C.; Xu, J. Q.; Elzatahry, A. A. et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew. Chem., Int. Ed.
2014, 53, 9035–9040.
Article
Google Scholar
Li, Z. J.; Niu, X. Y.; Lin, Z. J.; Wang, N. N.; Shen, H. H.; Liu, W.; Sun, K.; Fu, Y. Q.; Wang, Z. G. Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature. J. Alloy. Comp.
2016, 682, 647–653.
Article
Google Scholar
Li, M.; Zhou, D. X.; Zhao, J.; Zheng, Z. P.; He, J. G.; Hu, L.; Xia, Z.; Tang, J.; Liu, H. Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection. Sens. Actuat. B Chem.
2015, 217, 198–201.
Article
Google Scholar
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.
1996, 77, 3865–3868.
Article
Google Scholar
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car.; R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter
2009, 21, 395502.
Article
Google Scholar
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem.
2006, 27, 1787–1799.
Article
Google Scholar
Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B
1998, 58, 3641–3662.
Article
Google Scholar
Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B
1976, 13, 5188–5192.
Article
Google Scholar
Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter
2009, 21, 084204.
Article
Google Scholar
Kukkola, J.; Mohl, M.; Leino, A.-R.; Maklin, J.; Halonen, N.; Shchukarev, A; Konya, Z.; Jantunen, H.; Kordás, K. Room temperature hydrogen sensors based on metal decorated WO3 nanowires. Sens. Actuat. B Chem.
2013, 186, 90–95.
Article
Google Scholar
Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B
2008, 77, 125416.
Article
Google Scholar
Perrozzi, F.; Emamjomeh, S. M.; Paolucci, V.; Taglieri, G.; Ottaviano, L.; Cantalini, C. Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens. Actuat. B Chem.
2017, 243, 812–822.
Article
Google Scholar
Kukkola, J.; Mohl, M.; Leino, A.-R.; Tóth, G.; Wu, M.-C.; Shchukarev, A.; Popov, A.; Mikkola, J.-P.; Lauri, J.; Riihimäki, M. et al. Inkjet-printed gas sensors: Metal decorated WO3 nanoparticles and their gas sensing properties. J. Mater. Chem.
2012, 22, 17878–17886.
Article
Google Scholar
Kukkola, J.; Maklin, J.; Halonen, N.; Kyllönen, T.; Tóth, G.; Szabó, M.; Shchukarev, A.; Mikkola, J.-P.; Jantunen, H.; Kordás, K. Gas sensors based on anodic tungsten oxide. Sens. Actuat. B Chem.
2011, 153, 293–300.
Article
Google Scholar
Cha, J.-H.; Choi, S.-J.; Yu, S.; Kim, I.-D. 2D WS2-edge functionalized multi-channel carbon nanofibers: Effect of WS2 edge-abundant structure on room temperature NO2 sensing. J. Mater. Chem. A
2017, 5, 8725–8732.
Article
Google Scholar