Skip to main content
Log in

Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The identification of highly active heterogeneous catalysts to replace their homogeneous counterparts remains a challenge in the case of organic catalysts, especially polymers, in highly viscous reaction systems. In this work, we designed and synthesized a novel, solid-supported, and heterogeneous pseudo-single atom Pt catalyst with high activity and recyclability. Superparamagnetic Fe3O4-SiO2 core–shell nanoparticles (NPs) were used as the substrate. The functionalization of the SiO2 shell with silane coupling agents containing vinyl groups allows stabilizing Pt on the SiO2 surface through complexation. The as-prepared pseudo-single atom Pt displays high activity in the hydrosilylation of allyl-terminated polyether with polymethylhydrosiloxane and could be easily collected by applying a magnetic field. The Pt/vinyl/SiO2/Fe3O4 catalyst can be reused for up to four reaction cycles without appreciable decrease in activity. This work demonstrates a novel strategy for the design of pseudo-single atom noble metal catalysts for processes in high-viscosity media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marciniec, B. Comprehensive Handbook on Hydrosilylation; Elsevier: Amsterdam, 1992.

    Google Scholar 

  2. Glaser, P. B.; Tilley, T. D. Catalytic hydrosilylation of alkenes by a ruthenium silylene complex. Evidence for new hydrosilylation mechanism. J. Am. Chem. Soc. 2003, 125, 13640–13641.

    Article  Google Scholar 

  3. Jariwala, B. N.; Dewey, O. S.; Stradins, P.; Ciobanu, C. V.; Agarwal, S. In situ gas-phase hydrosilylation of plasmasynthesized silicon nanocrystals. ACS Appl. Mater. Interfaces 2011, 3, 3033–3041.

    Article  Google Scholar 

  4. Roy, A. K. A review of recent progress in catalyzed homogeneous hydrosilation (hydrosilylation). Adv. Organomet. Chem. 2007, 55, 1–59.

    Article  Google Scholar 

  5. Marciniec, B. Catalysis by transition metal complexes of alkene silylation—Recent progress and mechanistic implications. Coordin. Chem. Rev. 2005, 249, 2374–2390.

    Article  Google Scholar 

  6. Troegel, D.; Stohrer, J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coordin. Chem. Rev. 2011, 255, 1440–1459.

    Article  Google Scholar 

  7. Eaborn, C. Some recent studies of the cleavage of carbonsilicon and related bonds. Pure. Appl. Chem. 1969, 19, 375–388.

    Article  Google Scholar 

  8. Grate, J. W.; Kaganove, S. N. Hydrosilylation: A versatile reaction for polymer synthesis. Polymer News 1999, 24, 149–155.

    Google Scholar 

  9. Speier, J. L. Homogeneous catalysis of hydrosilation by transition metals. Adv. Organomet. Chem. 1979, 17, 407–447.

    Article  Google Scholar 

  10. Hitchcock, P. B.; Lappert, M. F.; Warhurst, N. J. W. Synthesis and structure of a rac-tris(divinyldisiloxane) diplatinum(0) complex and its reaction with maleic anhydride. Angew. Chem., Int. Ed. 1991, 30, 438–440.

    Article  Google Scholar 

  11. Karstedt, B. Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes. U.S. Patent 3,775,452, November 27, 1973.

    Google Scholar 

  12. Zhao, H.; Zha, L. F.; Cai, M. Z. Synthesis of an MCM-41-supported mercapto rhodium complex and its catalytic behavior in the hydrosilylation of olefins with triethoxysilane. React. Kinet. Mech. Cat. 2010, 100, 187–196.

    Google Scholar 

  13. Marciniec, B.; Szubert, K.; Fiedorow, R.; Kownacki, I.; Potrzebowski, M. J.; Dutkiewicz, M.; Franczyk, A. Catalysis of hydrosilylation by well-defined rhodium siloxide complexes immobilized on silica. J. Mol. Catal. A: Chem. 2009, 310, 9–16.

    Article  Google Scholar 

  14. Onoe, T.; Iwamoto, S.; Inoue, M. Synthesis and activity of the Pt catalyst supported on CNT. Catal. Commun. 2007, 8, 701–706.

    Article  Google Scholar 

  15. Hamasaka, G.; Kawamorita, S.; Ochida, A.; Akiyama, R.; Hara, K.; Fukuoka, A.; Asakura, K.; Chun, W. J.; Ohmiya, H.; Sawamura, M. Synthesis of silica-supported compact phosphines and their application to rhodium-catalyzed hydrosilylation of hindered ketones with triorganosilanes. Organometallics 2008, 27, 6495–6506.

    Article  Google Scholar 

  16. Corma, A.; Garcia, H. Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis. Adv. Synth. Catal. 2006, 348, 1391–1412.

    Article  Google Scholar 

  17. Shih, H.-H.; Williams, D.; Mack, N. H.; Wang, H.-L. Conducting polymer-based electrodeless deposition of Pt nanoparticles and its catalytic properties for regioselective hydrosilylation reactions. Macromolecules 2009, 42, 14–16.

    Article  Google Scholar 

  18. Zai, H. C.; Zhao, Y. Z.; Chen, S. Y.; Wang, R.; Ge, L.; Chen, C. F.; Li, Y. J. A novel hierachically-nanostructured Pt/SiO2/Fe3O4 catalyst with high activity and recyclability towards hydrosilylation. RSC Adv. 2016, 6, 98520–98527.

    Article  Google Scholar 

  19. Ewing, C. S.; Bagusetty, A.; Patriarca, E. G.; Lambrecht, D. S.; Veser, G.; Johnson, J. K. Impact of support interactions for single-atom molybdenum catalysts on amorphous silica. Ind. Eng. Chem. Res. 2016, 55, 12350–12357.

    Article  Google Scholar 

  20. Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

    Article  Google Scholar 

  21. Qiao, B. T.; Liang, J.-X.; Wang, A. Q.; Xu, C.-Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.

    Article  Google Scholar 

  22. Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938–996.

    Article  Google Scholar 

  23. Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  Google Scholar 

  24. Yi, D. K.; Lee, S. S.; Papaefthymiou, G. C.; Ying, J. Y. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem. Mater. 2006, 18, 614–619.

    Article  Google Scholar 

  25. Kaya, M.; Zahmakiran, M.; Özkar, S.; Volkan, M. Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: Cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance. ACS Appl. Mater. Interfaces 2012, 4, 3866–3873.

    Article  Google Scholar 

  26. Yang, J. P.; Shen, D. K.; Wei, Y.; Li, W.; Zhang, F.; Kong, B.; Zhang, S. H.; Teng, W.; Fan, J. W.; Zhang, W. X. et al. Monodisperse core–shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Res. 2015, 8, 2503–2514.

    Article  Google Scholar 

  27. Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. Rapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalyst. J. Am. Chem. Soc. 2015, 137, 13244–13247.

    Article  Google Scholar 

  28. Naumkin, A.; Kraut-Vass, A.; Gaarenstroom, S.; Powell, C. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1 [Online]; 2012. https://srdata.nist.gov/xps/ (accessed Sep 15, 2012).

    Google Scholar 

  29. Li, J.; Yang, C. H.; Zhang, L.; Ma, T. L. A novel fumed silica-supported nitrogenous platinum complex as a highly efficient catalyst for the hydrosilylation of olefins with triethoxysilane. J. Organomet. Chem. 2011, 696, 1845–1849.

    Article  Google Scholar 

  30. Ling, Q. C.; Gong, H.; Xie, G. Q.; Xiao-Lei, L. I.; Guo, W. X. Determination of platinum in platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane. Silicone Mater. 2014, 28, 32–35.

    Google Scholar 

  31. Shang, C. Y.; Yuan, S. F.; Yin, H.; Chen, Z. R. Determination of content of hydrogen and molecular weight in hydrogen silicone oil by 1H NMR. Chin. J. Spectrosc. Lab. 2011, 28, 1287–1292.

    Google Scholar 

  32. Guo, L.; Sun, Y. B.; Yang, S. Z. Tribochemistry research of lead naphthenate. Synth. Lubr. 2012, 39, 1–3.

    Google Scholar 

  33. Markó, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J.-P. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 2002, 298, 204–206.

    Article  Google Scholar 

Download references

Acknowledgements

Y. J. L. acknowledges the Microstructure Laboratory for Energy Materials (MLEM) at CUP. This work is partially supported by the National Natural Science Foundation of China (No. 21303265) and Ph.D. Programs Foundation of Ministry of Education of China (No. 20130007120012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changfeng Chen or Yujing Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zai, H., Zhao, Y., Chen, S. et al. Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst. Nano Res. 11, 2544–2552 (2018). https://doi.org/10.1007/s12274-017-1879-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1879-6

Keywords

Navigation