Skip to main content
Log in

Cell-assembled (Gd-DOTA)i-triphenylphosphonium (TPP) nanoclusters as a T2 contrast agent reveal in vivo fates of stem cell transplants

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A simple and straightforward strategy for magnetic resonance imaging (MRI) of stem cell transplants in terms of their viability, migration and homing, and differentiation has been pursued over the years. Herein we couple Gd-DOTA with triphenylphosphonium (TPP) to yield small molecule (Gd-DOTA)i-TPP (i = 1,4) agents and show that labeling cells with (Gd-DOTA)i-TPP via electroporation (EP) results in two distinct cellular distributions of (Gd-DOTA)i-TPP: freely and evenly distributed in the cytosol or cell-assembled nanoclusters in the cytoplasm. The two distinct cellular distributions contribute in different ways to MRI signals in vitro and in vivo. Importantly, we present a detailed interpretation of MRI results based on the signal intensity equation and cellular longitudinal (T1-) and transverse (T2-) relaxation rates of water protons. We demonstrate that cell-assembled (Gd-DOTA)i-TPP nanoclusters not only promote its intracellular retention time but also induce significant MRI signal reduction, which act as an excellent T2 contrast agent and allows for unambiguous reporting of in vivo viability and migration of cell transplants under T2-weighted MRI over a long period. Notably, (Gd-DOTA)i-TPP agents released as a result of exocytosis or cell death induce signal enhancement in the surrounding tissue such that the labeled cells can be unambiguously discriminated from its host tissue. The labeling and imaging strategy provides abundant information on the in vivo fates of stem cell transplants. The strategy features a single contrast, single imaging mode with dual signal output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weightman, A. P.; Jenkins, S. I.; Chari, D. M. Using a 3-D multicellular simulation of spinal cord injury with live cell imaging to study the neural immune barrier to nanoparticle uptake. Nano Res. 2016, 9, 2384–2397.

    Article  Google Scholar 

  2. Yu, M.; Lei, B.; Gao, C. B.; Yan, J.; Ma, P. X. Optimizing surface-engineered ultra-small gold nanoparticles for highly efficient miRNA delivery to enhance osteogenic differentiation of bone mesenchymal stromal cells. Nano Res. 2017, 10, 49–63.

    Article  Google Scholar 

  3. Deng, J.; Zheng, H. H.; Zheng, X. W.; Yao, M. Y.; Li, Z.; Gao, C. Y. Gold nanoparticles with surface-anchored chiral poly(acryloyl-L(D)-valine) induce differential response on mesenchymal stem cell osteogenesis. Nano Res. 2016, 9, 3683–3694.

    Article  Google Scholar 

  4. Gera, A.; Steinberg, G. K.; Guzman, R. In vivo neural stem cell imaging: current modalities and future directions. Regen. Med. 2010, 5, 73–86.

    Article  Google Scholar 

  5. Bulte, J. W. M. In vivo MRI cell tracking: Clinical studies. Am. J. Roentgenol. 2009, 193, 314–325.

    Article  Google Scholar 

  6. Kraitchman, D. L.; Bulte, J. W. M. Imaging of stem cells using MRI. Basic Res. Cardiol. 2008, 103, 105–113.

    Google Scholar 

  7. Politi, L. S. MR-based imaging of neural stem cells. Neuroradiology 2007, 49, 523–534.

    Article  Google Scholar 

  8. Rogers, W. J.; Meyer, C. H.; Kramer, C. M. Technology insight: in vivo cell tracking by use of MRI. Nat. Clin. Prac. Cardiov. Med. 2006, 3, 554–562.

    Article  Google Scholar 

  9. Mahmoudi, M.; Hosseinkhani, H.; Hosseinkhani, M.; Boutry, S.; Simchi, A.; Shane Journeay, W.; Subramani, K.; Laurent, S. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem. Rev. 2011, 111, 253–280.

    Article  Google Scholar 

  10. Bulte, J. W. M.; Zhang, S. C.; van Gelderen, P.; Herynek, V.; Jordan, E. K.; Duncan, I. D.; Frank, J. A. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. USA 1999, 96, 15256–15261.

    Article  Google Scholar 

  11. Hoehn, M.; Kü stermann, E.; Blunk, J.; Wiedermann, D.; Trapp, T.; Wecker, S.; Fö cking, M.; Arnold, H.; Hescheler, J.; Fleischmann, B. K. et al. Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA 2002, 99, 16267–16272.

    Article  Google Scholar 

  12. Guzman, R.; Bliss, T.; De Los Angeles, A.; Moseley, M.; Palmer, T.; Steinberg, G. Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J. Neurosci. Res. 2008, 86, 873–882.

    Article  Google Scholar 

  13. Hinds, K. A.; Hill, J. M.; Shapiro, E. M.; Laukkanen, M. O.; Silva, A. C.; Combs, C. A.; Varney, T. R.; Balaban, R. S.; Koretsky, A. P.; Dunbar, C. E. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 2003, 102, 867–872.

    Article  Google Scholar 

  14. Shapiro, E. M.; Skrtic, S.; Sharer, K.; Hill, J. M.; Dunbar, C. E.; Koretsky, A. P. MRI detection of single particles for cellular imaging. Proc. Natl. Acad. Sci. USA 2004, 101, 10901–10906.

    Article  Google Scholar 

  15. Yi, P. W.; Chen, G. C.; Zhang, H. L.; Tian, F.; Tan, B.; Dai, J. W.; Wang, Q. B.; Deng, Z. W. Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials 2013, 34, 3010–3019.

    Article  Google Scholar 

  16. Terrovitis, J.; Stuber, M.; Youssef, A.; Preece, S.; Leppo, M.; Kizana, E.; Schä r, M.; Gerstenblith, G.; Weiss, R. G.; Marbá n, E. et al. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 2008, 117, 1555–1562.

    Article  Google Scholar 

  17. Wang, Y. X. J.; Wang, H. H.; Au, D. W. T.; Zou, B. S.; Teng, L. S. Pitfalls in employing superparamagnetic iron oxide particles for stem cell labeling and in vivo MRI tracking. Brit. J. Radiol. 2008, 81, 987–988.

    Article  Google Scholar 

  18. Khurana, A.; Nejadnik, H.; Gawande, R.; Lin, G. T.; Lee, S. M.; Messing, S.; Castaneda, R.; Derugin, N.; Pisani, L.; Lue, T. F. et al. Intravenous ferumoxytol allows noninvasive MRimaging monitoring of macrophage migration into stem cell transplants. Radiology 2012, 264, 803–811.

    Article  Google Scholar 

  19. Wang, Q. W.; Chen, B.; Ma, F.; Lin S. K.; Cao M.; Li Y.; Gu, N. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res. 2017, 10, 626–642.

    Article  Google Scholar 

  20. Guenoun, J.; Ruggiero, A.; Doeswijk, G.; Janssens, R. C.; Koning, G. A.; Kotek, G.; Krestin, G. P.; Bernsen, M. R. In vivo quantitative assessement of cell viability of gadolinium or iron-labeled cells using MRI and bioluminescence imaging. Contrast Media Mol. Imaging 2013, 8, 165–174.

    Article  Google Scholar 

  21. Nejadnik, H.; Ye, D. J.; Lenkov, O. D.; Doing, J. S.; Martin, J. E; Castillo, R.; Derugin, N.; Sennino, B.; Rao, J. H.; Daldrup-Link, H. E. Magnetic resonance imaging of stem cell apoptosis in arthritic joints with a caspase activatable contrast agent. ACS Nano 2015, 9, 1150–1160.

    Article  Google Scholar 

  22. Villaraza, A. J. L.; Bumb, A.; Brechbiel, M. W. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: The interplay between size, function, and pharmacokinetics. Chem. Rev. 2010, 110, 2921–2959.

    Article  Google Scholar 

  23. Tachibana, Y.; Enmi J. I.; Agudelo, C. A.; Iida, H.; Yamaoka, T. Long-term/bioinert labeling of rat mesenchymal stem cells with PVA-Gd conjugates and MRI monitoring of the labeled cell survival after intramuscular transplantation. Bioconjugate Chem. 2014, 25, 1243–1251.

    Article  Google Scholar 

  24. Agudelo, C. A.; Tachibana, Y.; Hurtado, A. F.; Ose, T.; Iida, H.; Yamaoka, T. The use of magnetic resonance cell tracking to monitor endothelial progenitor cells in a rat hindlimb ischemic model. Biomaterials 2012, 33, 2439–2448.

    Article  Google Scholar 

  25. Ngen, E. J.; Wang, L.; Kato, Y.; Krishnamachary, B.; Zhu, W. L.; Gandhi, N.; Smith, B.; Armour, M.; Wong, J.; Gabrielson, K. et al. Imaging transplanted stem cells in real time using an MRI dual-contrast method. Sci. Rep. 2015, 5, 13628.

    Article  Google Scholar 

  26. Endres, P. J.; MacRenaris, K. W.; Vogt, S.; Meade, T. J. Cellpermeable MRcontrast agents with increased intracellular retention. Bioconjugate Chem. 2008, 19, 2049–2059.

    Article  Google Scholar 

  27. Cohen, B.; Ziv, K.; Plaks, V.; Israely, T.; Kalchenko, V.; Harmelin, A.; Benjamin, L. E.; Neeman, M. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat. Med. 2007, 13, 498–503.

    Article  Google Scholar 

  28. Genove, G.; DeMarco, U.; Xu, H. Y.; Goins, W. F.; Ahrens, E. T. A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med. 2005, 11, 450–454.

    Article  Google Scholar 

  29. Choi, J. S.; Lee, J. H.; Shin, T. H.; Song, H. T.; Kim, E. Y.; Cheon, J. Self-confirming “and” logic nanoparticles for fault-free MRI. J. Am. Chem. Soc. 2010, 132, 11015–11017.

    Article  Google Scholar 

  30. Zhou, Z. J.; Huang, D. T.; Bao, J. F.; Chen, Q. L.; Liu, G.; Chen, Z.; Chen, X. Y.; Gao, J. H. A synergistically enhanced T 1-T 2 dual-modal contrast agent. Adv. Mater. 2012, 24, 6223–6228.

    Article  Google Scholar 

  31. Ni, K. Y.; Zhao, Z. H.; Zhang, Z. J.; Zhou, Z. J.; Yang, L.; Wang, L. R.; Ai, H.; Gao, J. H. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T 1 contrast ability. Nanoscale 2016, 8, 3768–3774.

    Article  Google Scholar 

  32. Murphy, M. P.; R. Smith, R. A. J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629–656.

    Article  Google Scholar 

  33. Murphy M. P.; Smith, R. A. J. Drug delivery to mitochondria: The key to mitochondrial medicine. Adv. Drug Del. Rev. 2000, 41, 235–250.

    Article  Google Scholar 

  34. Morrison, D. E.; Aitken, J. B.; de Jonge, M. D.; Issa, F.; Harris, H. H.; Rendina, L. M. Synthesis and biological evaluation of a class of mitochondrially-targeted Gadolinium(III) agents. Chem. Eur. J. 2014, 20, 16602–16612.

    Article  Google Scholar 

  35. DiGregorio, E.; Ferrauto, G; Gianolio, E.; Aime, S. Gd loading by hypotonic swelling: an efficient and safe route for cellular labeling. Contrast Media Mol. Imaging 2013, 8, 475–486.

    Article  Google Scholar 

  36. Li, C.; Winnard, P. Jr.; Bhujwalla, Z. M. Facile synthesis of 1-(acetic acid)-4,7,10-tris(tert-butoxycarbonylmethyl)-1,4,7,10- tetraazacyclododecane: a reactive precursor chelating agent. Tetrahedron Lett. 2009, 50, 2929–2931.

    Article  Google Scholar 

  37. Zhang, Q. Q.; Cao, R.; Fei, H.; Zhou, M. Mitochondriatargeting phosphorescent iridium(III) complexes for living cell imaging. Dalton Trans. 2014, 43, 16872–16879.

    Article  Google Scholar 

  38. McRobbie, D. W; Moore, E. A.; Graves, M. J.; Prince, M. R. MRI from Picture to Proton; 2nd ed. Cambridge University Press: New York, 2007.

    Google Scholar 

  39. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: Structures, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352.

    Article  Google Scholar 

  40. Barthel. A. K.; Dass, M.; Dröge, M.; Cramer, J. M.; Baumann, D; Urban, M.; Landfester, K.; Mailänder, V.; Liberwirth, I. Imaging the intracellular degradation of biodegradable polymer nanoparticles. Beilstein J. Nanotechnol. 2014, 5, 1905–1917.

    Article  Google Scholar 

  41. Terreno, E.; Crich, S. G.; Belfiore, S.; Biancone, L.; Cabella, C.; Esposito, G; Manazza, A. D; Aime, S. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn. Reson. Med. 2006, 55, 491–497.

    Article  Google Scholar 

  42. Gianolio, E.; Arena, F; Strijkers, G. J.; Nicolay, K.; Hö gset, A.; Aime, S. Photochemical activation of endosomal escape of MRI-Gd-agents in tumor cells. Mag. Reson. Med. 2011, 65, 212–219.

    Article  Google Scholar 

  43. Digilio. G.; Catanzaro, V.; Fedeli, F.; Gianolio, E.; Menchise, V.; Napolitano, R.; Gringeri, C.; Aime, S. Targeting exofacial protein thiols with GdIII complexes. An efficient procedure for MRI cell labelling. Chem. Comm. 2009, 893–895.

    Google Scholar 

  44. Digilio, G.; Menchise, V.; Gianolio, E.; Catanzaro, V.; Carrera, C.; Napolitano, R.; Fedeli, F.; Aime, S. Exofacial protein thiols as a route for the internalization of Gd(III)-based complexes for magnetic resonance imaging cell labeling. J. Med. Chem. 2010, 53, 4877–4890.

    Article  Google Scholar 

  45. Cao, L. M,; Li, B. B.; Yi, P. W.; Zhang, H. L.; Dai, J. W.; Tan, B.; Deng, Z. W. The interplay of T 1- and T 2-relaxiation on T1-weighted MRI of hMSCs induced by Gd-DOTApeptides. Biomaterials 2014, 35, 4168–4174.

    Article  Google Scholar 

  46. Chen, H. W.; Yeh, J. L.; Wang, L. Y.; Khurshid, H.; Peng, N.; Wang, A. Y.; Mao, H. Preparation and control of the formation of single core and clustered nanoparticles for biomedical applications using a versatile amphiphilic diblock copolymer. Nano Res. 2010, 3, 852–862.

    Article  Google Scholar 

  47. Chen, H. W.; Zou, P.; Connam, J.; Paholak, H.; Sun, D. X. Intracellular dissociation of a polymer coating from nanoparticles. Nano Res. 2012, 5, 815–825.

    Article  Google Scholar 

  48. Yang, Z. Z.; Ding, X. G.; Jiang, J. Facile synthesis of magnetic-plasmonicnanocomposites as T 1 MRI contrast enhancing and photothermal therapeutic agents. Nano Res. 2016, 9, 787–799.

    Article  Google Scholar 

  49. Caravan, P.; Farrar, C. T.; Frullano, L.; Uppal, R. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 2009, 4, 89–100.

    Article  Google Scholar 

  50. Wang, L. R.; Lin, H. Y.; Ma, L. C.; Jin, J. B.; Shen, T. P.; Wei, R. X.; Wang, X. M.; Ai, H.; Chen, Z.; Gao, J. H. Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T 1-T 2 dual-mode contrast agents for accurate liver tumor imaging. Nanoscale 2017, 9, 4516–4523.

    Article  Google Scholar 

  51. Pereira, G. A.; Ananias, D.; Rocha, J.; Amaral, V. S.; Muller, R. N.; Vander, Elst L.; Tóth, É.; Peters, J. A.; Geraldes, C. F. G. C. NMR relaxivity of Ln3+-based zeolite-type materials. J. Mater. Chem. 2005, 15, 3832–3837.

    Article  Google Scholar 

  52. Peters, J. A.; Djanashvili, K. Lanthanide loaded zeolites, clays, and mesoporous silica materials as MRI probes. Eur. J. Inorg. Chem. 2012, 2012, 1961–1974.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by general projects from the National Natural Science Foundation of China (Nos. 21673281, 31371010), a Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA01030203), and a Basic Research Project from the Ministry of Science and Technology of China (No. 2011CB965004). The authors also acknowledge Karebay Biochem Inc. for assistance with synthesis of DOTAi-TPP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Tan or Zongwu Deng.

Electronic supplementary material

12274_2017_1778_MOESM1_ESM.pdf

Cell-assembled (Gd-DOTA)i-triphenylphosphonium (TPP) nanoclusters as a T2 contrast agent reveal in vivo fates of stem cell transplants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, H., Li, B. et al. Cell-assembled (Gd-DOTA)i-triphenylphosphonium (TPP) nanoclusters as a T2 contrast agent reveal in vivo fates of stem cell transplants. Nano Res. 11, 1625–1641 (2018). https://doi.org/10.1007/s12274-017-1778-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1778-x

Keywords

Navigation