Skip to main content

Advertisement

Log in

MR-based imaging of neural stem cells

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–489

    Article  PubMed  CAS  Google Scholar 

  2. Biffi A, De Palma M, Quattrini A et al (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113:1118–1129

    Article  PubMed  CAS  Google Scholar 

  3. Biffi A, Capotondo A, Fasano S et al (2006) Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 116:3070–3082

    Article  PubMed  CAS  Google Scholar 

  4. Escolar ML, Poe MD, Provenzale JM et al (2005) Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 352:2069–2081

    Article  PubMed  CAS  Google Scholar 

  5. Bang OY, Lee JS, Lee PH et al (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882

    Article  PubMed  Google Scholar 

  6. Lacorazza HD, Flax JD, Snyder EY et al (1996) Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med 2:424–429

    Article  PubMed  CAS  Google Scholar 

  7. Snyder EY, Yoon C, Flax JD et al (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci USA 94:11663–11668

    Article  PubMed  CAS  Google Scholar 

  8. Flax JD, Aurora S, Yang C et al (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16:1033–1039

    Article  PubMed  CAS  Google Scholar 

  9. Ourednik J, Ourednik V, Lynch WP et al (2002) Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol 2002:1103–1110

    Article  CAS  Google Scholar 

  10. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  11. Ivanova NB, Dimos JT, Schaniel C (2002) A stem cell molecular signature. Science 298:601–604

    Article  PubMed  CAS  Google Scholar 

  12. Temple S (2001) The development of neural stem cells. Nature 414:112–117

    Article  PubMed  CAS  Google Scholar 

  13. Park KI, Ourednik J, Ourednik V et al (2002) Global gene and cell replacement strategies via stem cells. Gene Ther 9:613–624

    Article  PubMed  CAS  Google Scholar 

  14. Yandava BD, Billinghurst LL, Snyder EY (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci USA 96:7029–7034

    Article  PubMed  CAS  Google Scholar 

  15. Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7:395–406

    Article  PubMed  CAS  Google Scholar 

  16. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  PubMed  CAS  Google Scholar 

  17. Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders – how to make it work. Nat Med 10:42–50

    Article  CAS  Google Scholar 

  18. McDonald JW, Liu XZ, Qu Y et al (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412

    Article  PubMed  CAS  Google Scholar 

  19. Tarasenko YI, Gao J, Nie L et al (2007) Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res 85:47–57

    Article  PubMed  CAS  Google Scholar 

  20. Ziv Y, Avidan H, Pluchino S et al (2006) Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci USA 103:13174–13179

    Article  PubMed  CAS  Google Scholar 

  21. Chu K, Kim M, Park KI et al (2004) Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016:145–153

    Article  PubMed  CAS  Google Scholar 

  22. Jeong SW, Chu K, Jung KH et al (2003) Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34:2258–2263

    Article  PubMed  Google Scholar 

  23. Pluchino S, Quattrini A, Brambilla E et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694

    Article  PubMed  CAS  Google Scholar 

  24. Pluchino S, Zanotti L, Rossi B et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    Article  PubMed  CAS  Google Scholar 

  25. Fallon J, Reid S, Kinyamu R et al (2000) In vivo induction of massive proliferation, directed migration and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci USA 19:14686–14691

    Article  Google Scholar 

  26. Nakatomi H, Kuriu T, Okabe S et al (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441

    Article  PubMed  CAS  Google Scholar 

  27. Consiglio A, Gritti A, Dolcetta D et al (2004) Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc Natl Acad Sci USA 101:14835–14840

    Article  PubMed  CAS  Google Scholar 

  28. Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  PubMed  Google Scholar 

  29. Blocklet D, Toungouz M, Kiss R et al (2003) 111In-oxine and 99 mTc-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content. Eur J Nucl Med Mol Imaging 30:440–447

    Article  PubMed  CAS  Google Scholar 

  30. Mendez I, Sanchez-Pernaute R, Cooper O et al (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128:1498–1510

    Article  PubMed  Google Scholar 

  31. Brooks DJ (2004) Positron emission tomography imaging of transplant function. NeuroRx 1:482–491

    Article  PubMed  Google Scholar 

  32. de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  CAS  Google Scholar 

  33. Kim DE, Schellingerhout D, Ishii K et al (2004) Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 35:952–957

    Article  PubMed  Google Scholar 

  34. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  PubMed  CAS  Google Scholar 

  35. Shreve P, Aisen AM (1986) Monoclonal antibodies labelled with polymeric paramagnetic iron chelates. Magn Reson Med 3:336–340

    Article  PubMed  CAS  Google Scholar 

  36. Kabalka G, Buonocore E, Hubner K et al (1987) Gadolinium-labelled liposomes: targeted MR contrast agents for the liver and spleen. Radiology 163:255–258

    PubMed  CAS  Google Scholar 

  37. Bryant LH, Brechbiel MW, Wu C et al (1999) Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn Reson Imaging 9:348–352

    Article  PubMed  Google Scholar 

  38. Botnar RM, Perez AS, Witte S et al (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029

    Article  PubMed  CAS  Google Scholar 

  39. Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767

    Article  PubMed  Google Scholar 

  40. Wang YX, Hussian SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  PubMed  CAS  Google Scholar 

  41. Helmberger T, Semelka RC (2001) New contrast agents for imaging the liver. Magn Reson Imaging Clin N Am 9:745–766

    PubMed  CAS  Google Scholar 

  42. Manninger SP, Muldoon LL, Nesbit G et al (2005) An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol 26:2290–2300

    PubMed  Google Scholar 

  43. Bulte JW, Doulglas T, Witwer B et al (2001) Magnetodendrimers allow endosomal magnetic labelling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  PubMed  CAS  Google Scholar 

  44. Lewin M, Carleso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  PubMed  CAS  Google Scholar 

  45. Frank JA, Miller BR, Arbab AS et al (2003) Clinically applicable labelling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487

    Article  PubMed  Google Scholar 

  46. Medina-Kauwe LK, Xie J, Hamm-Alvarez S (2005) Intracellular trafficking of nonviral vectors. Gene Ther 12:1734–1751

    Article  PubMed  CAS  Google Scholar 

  47. Arbab AS, Yocum GT, Wilson LB et al (2004) Comparison of transfection agents in forming complexes with ferumoxides, cell labelling efficiency, and cellular viability. Mol Imaging 3:24–32

    Article  PubMed  CAS  Google Scholar 

  48. Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labelling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223

    Article  PubMed  CAS  Google Scholar 

  49. Ittrich H, Lange C, Dahnke H et al (2005) Labelling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3 T. Rofo 177:1151–1163

    PubMed  CAS  Google Scholar 

  50. Dunning MD, Lakatos A, Loizuo L et al (2004) Superparamagnetic iron oxide-labelled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci 24:9799–9810

    Article  PubMed  CAS  Google Scholar 

  51. Walczak P, Kedziorek DA, Gilad AA et al (2005) Instant MR labelling of stem cells using magneto-electroporation. Magn Reson Med 54:769–774

    Article  PubMed  CAS  Google Scholar 

  52. Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53:329–338

    Article  PubMed  Google Scholar 

  53. Shapiro EM, Gonzalez-Perez O, Manuel Garcia-Verdugo J et al (2006) Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage 32:1150–1157

    Article  PubMed  Google Scholar 

  54. McMahon MT, Gilad AA, Zhou J et al (2006) Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. Magn Reson Med 55:836–847

    Article  PubMed  CAS  Google Scholar 

  55. Stroh A, Faber C, Neuberger T et al (2005) In vivo detection limits of magnetically labelled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24:635–645

    Article  PubMed  Google Scholar 

  56. Hinds KA, Hill JM, Shapiro EM et al (2003) Highly efficient endosomal labelling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872

    Article  PubMed  CAS  Google Scholar 

  57. Shapiro EM, Skrtic S, Sharer K et al (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101:10901–10906

    Article  PubMed  CAS  Google Scholar 

  58. Daldrup-Link HE, Rudelius M, Piontek G et al (2005) Migration of iron oxide-labelled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234:197–205

    Article  PubMed  Google Scholar 

  59. Heyn C, Ronald JA, Mackenzie LT et al (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55:23–29

    Article  PubMed  Google Scholar 

  60. Shapiro EM, Sharer K, Skrtic S et al (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249

    Article  PubMed  Google Scholar 

  61. Mani V, Briley-Saebo KC, Itskovich VV et al (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med 55:126–135

    Article  PubMed  CAS  Google Scholar 

  62. Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2005) Comparison of iron oxide labelling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 12:502–510

    Article  PubMed  Google Scholar 

  63. Vymazal J, Brooks RA, Baumgarner C et al (1996) The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 35:56–61

    Article  PubMed  CAS  Google Scholar 

  64. Dahnke H, Schaeffter T (2005) Limits of detection of SPIO at 3.0 T using T2* relaxometry. Magn Reson Med 53:1202–1206

    Article  PubMed  CAS  Google Scholar 

  65. Jensen JH, Chandra R, Ramani A et al (2006) Magnetic field correlation imaging. Magn Reson Med 55:1350–1361

    Article  PubMed  Google Scholar 

  66. Lebel RM, Menon RS, Bowen CV (2006) Relaxometry model of strong dipolar perturbers for balanced-SSFP: application to quantification of SPIO loaded cells. Magn Reson Med 55:583–591

    Article  PubMed  Google Scholar 

  67. Hagell P, Piccini P, Bjorklund A et al (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5:627–628

    PubMed  CAS  Google Scholar 

  68. Zhang ZG, Jiang Q, Zhang R et al (2003) Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53:259–263

    Article  PubMed  Google Scholar 

  69. Hoehn M, Kustermann E, Blunk J et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272

    Article  PubMed  CAS  Google Scholar 

  70. Zhang Z, Jiang Q, Jiang F et al (2004) In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage 23:281–287

    Article  PubMed  CAS  Google Scholar 

  71. Lee IH, Bulte JW, Schweinhardt P et al (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187:509–516

    Article  PubMed  Google Scholar 

  72. Ben-Hur T, Bulte JW (2004) In vivo MR tracking of magnetically labelled neural spheres transplanted in chronic EAE mice: relation between cell migration and inflammation. Proc Int Soc Magn Reson Med 12:159

    Google Scholar 

  73. Ben-Hur T, Einstein O, Mizrachi-Kol R et al (2003) Transplanted multipotential neural precursor cells migrate into inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41:73–80

    Article  PubMed  Google Scholar 

  74. Bulte JW, Zhang S, van Gelderen P et al (1999) Neurotransplantation of magnetically labelled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Sci USA 96:15256–15261

    Article  CAS  Google Scholar 

  75. Bos C, Delmas Y, Desmouliere A et al (2004) In vivo MR imaging of intravascularly injected magnetically labelled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789

    Article  PubMed  Google Scholar 

  76. Magnitsky S, Watson DJ, Walton RM et al (2005) In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain. Neuroimage 26:744–754

    Article  PubMed  CAS  Google Scholar 

  77. Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  78. Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2:215–225

    Article  PubMed  Google Scholar 

  79. Amendola M, Venneri MA, Biffi A et al (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23:108–116

    Article  PubMed  CAS  Google Scholar 

  80. Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325

    Article  PubMed  CAS  Google Scholar 

  81. Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355

    Article  PubMed  CAS  Google Scholar 

  82. Gilad AA, McMahon MT, Winnard PT et al (2005) MRI reporter gene providing contrast based on chemical exchange saturation transfer (CEST) (abstract 363). Proceedings of the 13th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, 7–13 May, Miami

  83. Cohen B, Dafni H, Meir G et al (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7:109–117

    Article  PubMed  CAS  Google Scholar 

  84. Genove G, DeMarco U, Xu H et al (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11:450–454

    Article  PubMed  CAS  Google Scholar 

  85. Alfke H, Stoppler H, Nocken F et al (2003) In vitro MR imaging of regulated gene expression. Radiology 228:488–492

    Article  PubMed  Google Scholar 

  86. Einstein O, Karussis D, Grigoriadis N et al (2003) Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci 24:1074–1082

    Article  PubMed  CAS  Google Scholar 

  87. Rafuse VF, Soundararajan P, Leopold C et al (2005) Neuroprotective properties of cultured neural progenitor cells are associated with the production of sonic hedgehog. Neuroscience 131:899–916

    PubMed  CAS  Google Scholar 

  88. Richardson RM, Broaddus WC, Holloway KL et al (2005) Grafts of adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline. Brain Res 1032:11–22

    Article  PubMed  CAS  Google Scholar 

  89. Ryu JK, Choi HB, McLarnor JG (2005) Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis 20:550–561

    Article  PubMed  CAS  Google Scholar 

  90. McBride JL, Behrstock SP, Chen EY et al (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219

    Article  PubMed  Google Scholar 

  91. Katawabata K, Migita M, Mochizuki H et al (2006) Ex vivo cell-mediated gene therapy for metachromatic leukodystrophy using neurospheres. Brain Res 1094:13–23

    Article  CAS  Google Scholar 

  92. Fukuhara Y, Kitazawa Y, Inagali M et al (2006) Histopathological and behavioral improvement of murine mucopolysaccharidosis type VII by intracerebral transplantation of neural stem cells. Mol Ther 13:548–555

    Article  PubMed  CAS  Google Scholar 

  93. Chu K, Kim M, Jung KH et al (2004) Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res 1023:213–221

    Article  PubMed  CAS  Google Scholar 

  94. Shear DA, Tate MC, Archer DR et al (2004) Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res 1026:11–22

    Article  PubMed  CAS  Google Scholar 

  95. Hofstetter CP, Holmstrom NA, Lilja JA et al (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8:346–353

    Article  PubMed  CAS  Google Scholar 

  96. Cummings BJ, Uchida N, Tamaki SJ et al (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 102:14069–14074

    Article  PubMed  CAS  Google Scholar 

  97. Teng YD, Lavik EB, Qu X et al (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99:3024–3029

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

L.S.P. is indebted to Dr. G. Martino, Dr. S. Pluchino, and Dr. M. Bacigaluppi for invaluable collaboration in murine NSC marking studies in EAE and for sharing their great expertise in NSC biology, to Dr. A. Gritti and Dr. M. Neri for human NSC labeling studies, to Prof. L. Naldini, Dr. S. Levi and Dr. M. Amendola for invaluable help with LV and MR reporter gene studies, to Dr. M. Cadioli for technical support, to Prof. G. Scotti, Dr. A. Falini and Dr. A. Biffi for their critical reading of the manuscript. The research of L.S.P. was supported by dedicated grants from the Italian Cariplo Foundation.

Conflict of interest statement

I declare that I have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letterio S. Politi.

Additional information

Dr. Letterio Politi was awarded the Lucien Appel Prize in 2006 by the European Society of Neuroradiology for his research into MR imaging of neural stem cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politi, L.S. MR-based imaging of neural stem cells. Neuroradiology 49, 523–534 (2007). https://doi.org/10.1007/s00234-007-0219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-007-0219-z

Keywords

Navigation