Skip to main content
Log in

Unraveling the correlation between the remanence ratio and the dipolar field in magnetic nanoparticles by tuning concentration, moment, and anisotropy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Well-dispersed, uniform cobalt ferrite (CoFe2O4) nanoparticles (NPs) with diameters of 9, 11, 14, and 30 nm were synthesized by thermal decomposition of a metal–organic salt. Multiple variables, including the interparticle distance, moment, and anisotropy, were altered by dilution in a silica matrix and reduction in hydrogen to reveal the intrinsic correlation between the ratio of remanence to saturation magnetization (M r/M s) and interparticle dipolar interactions, the strength of which was estimated by the maximum dipolar field H dip. To date, this correlation has not been systematically investigated experimentally. To prevent the particles from agglomerating, the reduction was performed after dilution. The results revealed that the correlation between M r/M s and H dip roughly followed M r/M s ∝ 1/lgH dip independent of the size, distance, moment, and anisotropy of the magnetic nanoparticles. In particular, the correlation was closer for the nanoparticle systems that had higher concentrations or moments, that is, stronger dipolar interactions. For the single-phase CoFe2O4 nanoparticles, deviation from M r/M s ∝ 1/lgH dip can be attributed to the effects of surface spin, and for the slightly reduced nanoparticles, this deviation can be attributed to the pinning effect of CoFe2O4 on CoFe2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, X. F.; Xu, S. L.; Wang, L. Y.; Duan, X.; Zhang, F. Z. Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Res. 2010, 3, 200–210.

    Article  Google Scholar 

  2. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

    Article  Google Scholar 

  3. Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L. L.; Shipley, H. J.; Kan, A.; Tomson, M. et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 2006, 314, 964–967.

    Article  Google Scholar 

  4. Triet, N. M.; Trung, T. Q.; Hien, N. T. D.; Siddiqui, S.; Kim, D.-I.; Lee, J. C.; Lee, N.-E. A flexible magnetoelectric field-effect transistor with magnetically responsive nanohybrid gate dielectric layer. Nano Res. 2015, 8, 3421–3429.

    Article  Google Scholar 

  5. Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116–1127.

    Article  Google Scholar 

  6. Ooi, F.; DuChene, J. S.; Qiu, J. J.; Graham, J. O.; Engelhard, M. H.; Cao, G. X.; Gai, Z.; Wei, W. D. A facile solvothermal synthesis of octahedral Fe3O4 nanoparticles. Small 2015, 11, 2649–2653.

    Article  Google Scholar 

  7. Liu, Y. X.; Wang, D. S.; Shi, J. X.; Peng, Q.; Li, Y. D. Magnetic tuning of upconversion luminescence in lanthanidedoped bifunctional nanocrystals. Angew. Chem., Int. Ed. 2013, 52, 4366–4369.

    Article  Google Scholar 

  8. Metin, Ö.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia–borane. Nano Res. 2010, 3, 676–684.

    Article  Google Scholar 

  9. Min, H.; Jo, S. M.; Kim, H. S. Efficient capture and simple quantification of circulating tumor cells using quantum dots and magnetic beads. Small 2015, 11, 2536–2542.

    Article  Google Scholar 

  10. Mendelev, V. S.; Ivanov, A. O. Ferrofluid aggregation in chains under the influence of a magnetic field. Phys. Rev. E 2004, 70, 051502.

    Article  Google Scholar 

  11. Huber, D. L. Synthesis, properties, and applications of iron nanoparticles. Small 2005, 1, 482–501.

    Article  Google Scholar 

  12. Laureti, S.; Varvaro, G.; Testa, A. M.; Fiorani, D.; Agostinelli, E.; Piccaluga, G.; Musinu, A.; Ardu, A.; Peddis, D. Magnetic interactions in silica coated nanoporous assemblies of CoFe2O4 nanoparticles with cubic magnetic anisotropy. Nanotechnology 2010, 21, 315701.

    Article  Google Scholar 

  13. Prado, Y.; Mazerat, S.; Rivière, E.; Rogez, G.; Gloter, A.; Sté phan, O.; Catala, L.; Mallah, T. Magnetization reversal in CsNiIICrIII(CN)6 coordination nanoparticles: Unravelling surface anisotropy and dipolar interaction effects. Adv. Funct. Mater. 2014, 24, 5402–5411.

    Article  Google Scholar 

  14. Ewerlin, M.; Demirbas, D.; Brüssing, F.; Petracic, O.; Ü. nal, A. A.; Valencia, S.; Kronast, F.; Zabel, H. Magnetic dipole and higher pole interaction on a square lattice. Phys. Rev. Lett. 2013, 110, 177209.

    Article  Google Scholar 

  15. Woinska, M.; Szczytko, J.; Majhofer, A.; Gosk, J.; Dziatkowski, K.; Twardowski, A. Magnetic interactions in an ensemble of cubic nanoparticles: A Monte Carlo study. Phys. Rev. B 2013, 88, 144421.

    Article  Google Scholar 

  16. Stoner, E. C.; Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. A 1948, 240, 599–642.

    Article  Google Scholar 

  17. Vargas, J. M.; Nunes, W. C.; Socolovsky, L. M.; Knobel, M.; Zanchet, D. Effect of dipolar interaction observed in ironbased nanoparticles. Phys. Rev. B 2005, 72, 184428.

    Article  Google Scholar 

  18. Zan, F. L.; Ma, Y. Q.; Ma, Q.; Zheng, G. H.; Dai, Z. X.; Wu, M. Z.; Li, G.; Sun, Z. Q.; Chen, X. S. One-step hydrothermal synthesis and characterization of high magnetization CoFe2O4/Co0.7Fe0.3 nanocomposite permanent magnets. J. Alloys Compd. 2013, 553, 79–85.

    Article  Google Scholar 

  19. Kurtan, U.; Topkaya, R.; Baykal, A. Sol–gel auto-combustion synthesis of PVP/CoFe2O4 nanocomposite and its magnetic characterization. Mater. Res. Bull. 2013, 48, 4889–4895.

    Article  Google Scholar 

  20. Mumtaz, A.; Maaz, K.; Janjua, B.; Hasanain, S. K.; Bertino, M. F. Exchange bias and vertical shift in CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 2007, 313, 266–272.

    Article  Google Scholar 

  21. Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G. Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a sol–gel autocombustion method. Chem. Mater. 2006, 18, 3835–3842.

    Article  Google Scholar 

  22. Diodati, S.; Pandolfo, L.; Caneschi, A.; Gialanella, S.; Gross, S. Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res. 2014, 7, 1027–1042.

    Article  Google Scholar 

  23. Leite, G. C. P.; Chagas, E. F.; Pereira, R.; Prado, R. J.; Terezo, A. J.; Alzamora, M.; Baggio-Saitovitch, E. Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J. Magn. Magn. Mater. 2012, 324, 2711–2716.

    Article  Google Scholar 

  24. Li, Y. F.; Hu, Y. J.; Huo, J. C.; Jiang, H.; Li, C. Z.; Huang, G. J. Stable core shell Co3Fe7–CoFe2O4 nanoparticles synthesized via flame spray pyrolysis approach. Ind. Eng. Chem. Res. 2012, 51, 11157–11162.

    Article  Google Scholar 

  25. Soares, J. M.; Cabral, F. A. O.; de Araú jo, J. H.; Machado, F. L. A. Exchange-spring behavior in nanopowders of CoFe2O4–CoFe2. Appl. Phys. Lett. 2011, 98, 072502.

    Article  Google Scholar 

  26. Li, W. M.; Wong, S. K.; Herng, T. S.; Yap, L. K.; Sim, C. H.; Yang, Z. C.; Chen, Y. J.; Shi, J. Z.; Han, G. C.; Xue, J. M. et al. Perpendicular magnetic clusters with configurable domain structures via dipole–dipole interactions. Nano Res. 2015, 8, 3639–3650.

    Article  Google Scholar 

  27. Wang, C.; Peng, S.; Lacroix, L.-M.; Sun, S. H. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res. 2009, 2, 380–385.

    Article  Google Scholar 

  28. Skomski, R.; Coey, J. M. D. Giant energy product in nanostructured two-phase magnets. Phys. Rev. B 1993, 48, 15812–15816.

    Article  Google Scholar 

  29. Mazz, K.; Usman, M.; Karim, S.; Mumtaz, A.; Hasanain, S. K.; Bertino, M. F. J. Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature. J. Appl. Phys. 2009, 105, 113917.

    Article  Google Scholar 

  30. Kneller, E. F.; Hawig, R. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn. 1991, 27, 3588–3560.

    Article  Google Scholar 

  31. Hyeon, T.; Chung, Y.; Park, J.; Lee, S. S.; Kim, Y. W.; Park, B. H. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J. Phys. Chem. B 2002, 106, 6831-6833.

    Article  Google Scholar 

  32. Lakshmi, N.; Bhargava, H.; Suwalka, O. P.; Venugopalan, K.; Sebastian, V., Reddy, V. R.; Gupta, A. Magnetic properties resulting from core-shell interactions in nanosized Ni0.25Co0.25Zn0.5Fe2O4. Phys. Rev. B 2009, 80, 174425.

    Article  Google Scholar 

  33. Del Bianco, L.; Fiorani, D.; Testa, A. M.; Bonetti, E.; Savini, L.; Signoretti, S. Magnetothermal behavior of a nanoscale Fe/Fe oxide granular system. Phys. Rev. B 2002, 66, 174418.

    Article  Google Scholar 

  34. Fu, J. C.; Zhang, J. L.; Peng, Y.; Zhao, J. G.; Tan, G. G.; Mellors, N. J.; Xie, E. Q.; Han, W. H. Unique magnetic properties and magnetization reversal process of CoFe2O4 nanotubes fabricated by electrospinning. Nanoscale 2012, 4, 3932–3936.

    Article  Google Scholar 

  35. Quesada, A.; Rubio-Marcos, F.; Marco, J. F.; Mompean, F. J.; García-Hernández, M.; Fernández, J. F. On the origin of remanence enhancement in exchange-uncoupled CoFe2O4-based composites. Appl. Phys. Lett. 2014, 105, 202405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, B., Ding, Z. & Ma, Y. Unraveling the correlation between the remanence ratio and the dipolar field in magnetic nanoparticles by tuning concentration, moment, and anisotropy. Nano Res. 9, 2772–2781 (2016). https://doi.org/10.1007/s12274-016-1166-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1166-y

Keywords

Navigation